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The Aims of the U.S. Muon Accelerator Program 
Muon accelerator R&D is focused 
on developing a facility that can 
address critical questions spanning 
two frontiers… 
 

The Intensity Frontier: 
with a Neutrino Factory producing 

well-characterized ! beams for precise, 
high sensitivity studies 

 
 
 

The Energy Frontier:  
with a Muon Collider capable of 
reaching multi-TeV CoM energies 

and 
a Higgs Factory on the border 

between these Frontiers 
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The unique potential of a facility based on muon 
accelerators is physics reach that SPANS 2 FRONTIERS 



Outline 

•  Introduction 
•  Physics Motivations for a Neutrino Factory and 

Muon Collider 
•  Muon Collider and Neutrino Factory Synergies 
•  R&D Challenges and the MAP Feasibility 

Assessment 
•  Concluding Remarks 
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INTRODUCTION 
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Why a Muon Collider? 
•  First – why a lepton collider? 

–  In proton (or proton-antiproton) collisions, composite particles 
(hadrons), made up of quarks and gluons, collide 

•  The fundamental interactions that take place are between individual 
components in the hadrons 

•  These components carry only a fraction of the total energy of the 
particles 

•  For p-p collisions, the effective interaction energies are O(10%) of the 
total center-of-mass (CoM) energy of the colliding protons 

•  Thus a 14 TeV CoM energy at the LHC probes an energy scale  
E < 2 TeV 

–  Electrons (and positrons) as well as muons are fundamental 
particles (leptons) 

•  Leptons are point-like particles 
•  Their energy and quantum state are well understood during the collision 
•  When the leptons and anti-leptons collide, the reaction products probe 

the full CoM energy  
•  Thus a few TeV lepton collider can provide a precision probe of the full 

energy range of fundamental processes that are discovered at the LHC 
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Muon (µ+µ-) Colliders vs Electron-
Positron Colliders (I) 

•  Now – why a muon collider? 
•  s-Channel Production 

–  When 2 particles annihilate with the correct quantum numbers to 
produce a single final state.  Examples: 
 e+e- ! Higgs    OR  µ+µ- ! Higgs 

–  The cross section for this process scales as m2 of the colliding 
particles, so: 

 

–  Thus a muon collider offers the potential to probe the Higgs resonance 
directly  

•  The luminosity required is not so large 
•  A precision scan capability is particularly interesting in the case of 

a richer Higgs structure (eg, a Higgs doublet) 
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Muon (µ+µ-) Colliders vs Electron-
Positron Colliders (II) 

•  Synchrotron Radiation 
–  In a circular machine, the energy loss per turn due to 

synchrotron radiation can be written as: 
 
                                           

 where ! is the bending radius 
"
"
 
–  If we are interested in reaching the TeV scale, an e+e- circular 

machine is not feasible due to the large energy losses 
Solution 1:  e+e- linear collider 
Solution 2:  Use a heavier lepton – eg, the muon 
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Muon (µ+µ-) Colliders vs Electron-
Positron Colliders (III) 

•  Beamstrahlung 
–  When electrons and positrons collide, the interaction of the particles in 

one beam with the electromagnetic fields of the other beam results in the 
radiation of photons (synchrotron radiation) " beamstrahlung    

–  This broadens the energy distribution of colliding particles and lowers the 
fraction of collisions that are near the nominal center-of-mass (CoM) 
energy 

–  The beamstrahlung effect is  
essentially negligible for a muon  
collider  
" most luminosity is produced  
near the nominal CoM energy 

•  Implications for a Higgs Factory 
–  With negligible beamstrahlung,  

it may be possible to directly  
probe the width of the Higgs 

–  Expected width of a standard  
Higgs is ~4.5 MeV 

–  126 GeV muon collider lattices with  
"E/E # 3!10-5 (3.8 MeV) have been designed 
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Beamstrahlung  in  
any  e+e- collider 

     #E/E $ %2 



Circular Colliders vs Linear Colliders 

•  Circular machines offer a number of advantages 
–  Many crossings at an interaction point 

•  Luminosity multiplier 
•  For a TeV-scale muon collider, expect to have O(1000) crossings for 

each bunch 
–  Multiple detectors can be used 

•  Luminosity multiplier 
•  Improved systematics understanding of the detectors 

–  The additional integrated luminosity from multiple crossings 
allows larger transverse emittances than are needed for a linear 
collider.  Machine tolerances become much easier 

–  Acceleration can utilize multiple passes through the RF system 
–  Overall, the beam and wall power for a circular machine can be 

significantly less than that for a linear collider 
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Ionization Cooling 
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Facility Scales 
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•  The footprint of a muon collider can be much smaller than 
other facilities 
–  Provides for a more flexible site choice 
–  Has the potential to provide cost savings in a fully engineered design 
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Luminosity 
•  The principle parameter driver is the production of 

luminosity at a single collision point 
 

  
  

•  where  
 N is the number of particles per bunch (assumed equal for all bunches)  
 fcoll is the overall collision rate at the interaction point (IP) 
"&x and &y are the horizontal and vertical beam sizes (assumed equal for  
 all bunches) 
 HD is the luminosity enhancement factor  

•  Ideally we want: 
–  High intensity bunches 
–  High repetition rate 
–  Small transverse beam sizes 

Linear Collider Form 

   
L =

N 2 fcoll

4!" x" y

H D
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ILC Parameters at the Interaction Point 
•  The parameters at the interaction point have been chosen to  

provide a nominal luminosity of 2!1034 cm-2s-1.  With 
N = 2!1010 particles/bunch 
&x ~ 640 nm ' (x

* = 20  mm, )x = 20    pm-rad  
&y ~  5.7 nm ' (y

* = 0.4 mm, )y = 0.08 pm-rad 
HD~ 1.7 
 
 

 
•  An average collision rate of ~14kHz is required. 
•  Beam sizes at the IP are determined by the strength of the final focus 

magnets and the emittance (phase space volume) of the incoming 
bunches.   

 
A number of issues impact the choice of the final focus parameters.  For example, the beam-beam 
interaction as two bunches pass through each other can enhance the luminosity, however, it also disrupts 
the bunches. If the beams are too badly disrupted, safely transporting them out of the detector to the beam 
dumps becomes quite difficult. Another effect is that of beamstrahlung which leads to significant energy 
losses by the particles in the bunches and can lead to unacceptable detector backgrounds. Thus the 
above parameter choices represent a complicated optimization. 

   
L =

N 2 fcoll

4!" x" y

H D = 1.4#1030 cm$2( )# fcoll

Muon Collider Luminosity 
•  For a muon collider, we can write the luminosity as: 

•  For the 1.5 TeV muon collider design, we have 
–  N = 2!1012 particles/bunch 
–  $x,y ~ 5.9 µm ' %* = 10  mm, &x,y(norm) = 25 µm-rad  
–  nturns~1000 
–  fbunch=15 Hz (rate at which new bunches are injected) 

 
 
•  But this is optimistic since we’ve assumed N is constant for 

~1000 turns when it’s actually decreasing.  The anticipated 
luminosity for this case is ~1.2!1034 cm-2s-1. 

September 19, 2013 Illinois Institute of Technology Physics Colloquium 14 

   
L =

N 2 fcoll

4!" x" y

=
N 2

nturns

nturns fbunch

4!" #
2

   
L !

N0
2nturns fbunch

4"# $
2 ! 1.4%1034 cm&2s&1



Challenges for a µ+µ- Collider   
•  Create pions from a MW-scale proton beam  

striking a target 
•  To avoid excessive power requirements, must efficiently 

capture the produced pions 
–  Capture of both forward and backward produced pions loses 

polarization 
•  The phase space of the created pions is very large! 

–  Transverse:  20* mm-rad 
–  Longitudinal:  2* m-rad 

•  Emittances must be cooled by factors of 106-107 to be 
suitable for multi-TeV collider operation 
~1000x in the transverse dimensions 
~40x in the longitudinal dimension 

•  The muon lifetime is 2.2 µs lifetime at rest 
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Cooling Options 

•  Electron/Positron cooling: use synchrotron radiation  
" For muons +E~1/m3 (too small!) 

•  Proton Cooling:  use  
–  A co-moving cold e- beam 
" For muons this is too slow 
–  Stochastic cooling 
" For muons this is also too slow 

•  Muon Cooling:  use  
–  Use Ionization Cooling 
" Likely the only viable option 
–  Optical stochastic cooling 
"  Maybe, but far from clear 
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Neutrino Radiation 
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R. Palmer 

THE PHYSICS MOTIVATIONS 
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The Physics Motivations 

•  Physics potential for the HEP community using muon beams 
–  Tests of Lepton Flavor Violation 
–  Anomalous magnetic moment " hints of new physics (g-2) 

–  Can provide equal fractions of electron  
and muon neutrinos at high intensity for  
studies of neutrino oscillations –  
the Neutrino Factory concept 

–  Offers a large coupling to the “Higgs mechanism” 
  
–  As with an e+e" collider, a µ+µ" collider would offer a precision probe of 

fundamental interactions – in contrast to hadron colliders 
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The Physics Needs: Neutrinos (I) 
•  In the neutrino sector it is critical to understand: 

–  #CP 
 

–  The mass hierarchy 

–  ,23 = */4, ,23 < */4 
or ,23 > */4 

–  Resolve the LSND and other short baseline experimental 
anomalies  [perhaps using beams from a muon storage 
ring (!STORM) in a short baseline experiment] 

–  And continue to probe for signs new physics 

September 19, 2013 Illinois Institute of Technology Physics Colloquium 20 

P. Huber 



The Physics Needs: Neutrinos (II) 
•  CP violation physics reach of various facilities 
 
Can we probe 
the CP violation 
in the neutrino 
sector at the  
same level as in 
the CKM Matrix? 
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P. Coloma, P. Huber, J. Kopp, W. Winter – article in preparation 

0.025 IDS-NF: 
700kW target, 
no cooling, 
2!108 s running time 
10-15 kTon detector 

The Physics Needs:  Colliders 
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Muon Collider Reach 
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E. Eichten A 10 TeV µ+µ- collider has similar discovery  

reach as a 100 TeV pp machine! 

Muon Collider Concept 
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Proton source:   
For example PROJECT X 
at 4 MW, with 2±1 ns long 
bunches 

Goal:  
Produce a high intensity  
µ beam whose 6D phase 
space is reduced by a 
factor of ~106 from its 
value at the production 
target 

Collider:  #s = 3 TeV  
Circumference  4.5km 
L = 3!1034 cm-2s-1 

µ/bunch = 2x1012 

$(p)/p = 0.1% 
&.N = 25 µm, &//N=72 mm 
%* = 5mm 
Rep. Rate = 12 Hz 

ECoM
126 GeV

1.5 TeV

3 TeV
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MUON COLLIDER AND NEUTRINO 
FACTORY SYNERGIES 
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The U.S. Muon Accelerator Program 
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A Staged Muon-Based Neutrino  and 
Collider Physics Program 
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Neutrinos from Stored Muons 

(Fermilab P-1028) 
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DOES NOT 
Require the  

Development of 
ANY 

New Technology 

An entry-level NF? 

nuStorm Proposal:  http://arxiv.org/abs/1308.6822 

A.Bross 
NuFACT12 

3.8 GeV/c 
stored µ"

10-100kW 



!Storm as an R&D Platform 

•  A high-intensity pulsed muon source  
•  100<p!<300 MeV/c muons 

–  Using extracted beam from ring 
–  1010 muons  per 1 !sec pulse 

•  Beam available simultaneously with 
physics operation 
–  Sterile ! search 
–  ! cross section measurements needed  

for ultimate precision in long baseline 
measurements 

•  !STORM also provides the  
opportunity to design, build and test 
decay ring instrumentation (BCT, 
momentum spectrometer,  
polarimeter) to measure and  
characterize the circulating muon flux. 
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IDS-NF baseline Neutrino Factory 
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K.Long 
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How Could a Staged ! Factory (NuMAX)  
to SURF Perform? 

What if we send beam from a ~5GeV muon storage ring to LBNE?  
 1 MW, no muon cooling  

"  3 MW, w/cooling 
"  4 MW, w/cooling 

What if we were able to have a 
magnetized LAr detector? 
Or a MIND detector w/3! the mass 
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stages PX�IIa, PX�IIb, PX�IV
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A Staged Plan with NuMAX at Fermilab 
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We want to provide  
the option to get here 



System Unit nuSTORM NuMAX NuMAX+ IDS-NF

8!1017 2!1020 1.2!1021 1!1021

3!1017 8!1019 5!1020 5!1020

Type SuperBIND MIND /      
Mag LAr

MIND /      
Mag LAr MIND

km 1.9 1300 1300 2000
kT 1.3 30 / 10 100 / 30 100
T 2 0.5-2 0.5-2 1-2

Type SuperBIND Suite Suite Suite
m 50 100 100 100
kT 0.1 1 2.7 2.7
T Yes Yes Yes Yes

GeV/c 3.8 5 5 10
m 480 600 600 1190
m 185 235 235 470
m 50 65 65 125

GeV/c - 0.22 0.22 0.22
GeV/pass - 0.95 0.95 0.56

MHz - 325 325 201
GeV/pass - 0.85 0.85 0.45

MHz - 325 325 201
GeV/pass - - - 1.6

MHz - - - 201
Cooling No No 4D 4D

MW 0.2 1 3 4
GeV 120 3 3 10

1!1021 0.1 41 125 25
Hz 0.75 70 70 50

Proton Beam Power
Proton Beam Energy

Protons/year 
Repetition Frequency

Distance from Ring
Mass

Magnetic Field

Distance from Ring
Mass

Magnetic Field

Parameters
Stored µ+ or µ-/year

!e or !µ to detectors/yr

Far Detector:

Near Detector:
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4.5-pass RLA  

Ring Momentum (Pµ)
Circumference (C)

Straight section 
Arc Length

Initial Momentum

Single-pass Linac

RLA I

RLA II

Neutrino Factory Staging (MASS) 
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For reference 

126 GeV Higgs Factory   
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Major advantage for Physics of a µ+µ- Higgs 
Factory: possibility of direct measurement of the 

Higgs boson width (/~4MeV FWHM expected) 

Reduced cooling: 
 ).N =0.3*0mm0rad,  
)||N =1*0mm0rad  

Illinois Institute of Technology Physics Colloquium 

s-channel coupling of Muons to HIGGS with high cross sections: 
Muon Collider of with L = 1032 cm-2s-1 @ 63 GeV/beam (~15,000 Higgs/year)  
Competitive with e+/e- Linear Collider with L = 2. 1034 cm-2s-1 @ 126 GeV/beam 

Sharp resonance: momentum spread of a few ! 10-5  

Han and Liu 
hep-ph 1210.7803  
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dispersion 
suppressor 

chromaticity correction 
sextupoles 

!* tuning 
section 

One IP in  
the latest 
design 

Multi-TeV Collider – 1.5 TeV Baseline 
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3S 4S1S Parameter Unit Value 

Beam energy TeV 0.75 

Repetition rate Hz 15 

Average luminosity / IP 1034/cm2/s 1.1 

Number of IPs, NIP -  2 

Circumference, C km 2.73 

(* cm 1 (0.5-2) 

Momentum compaction, 1p 10-5 -1.3 

Normalized r.m.s. emittance, ).N *0mm0mrad 25 

Momentum spread, &p/p % 0.1 

Bunch length, &s cm 1 

Number of muons / bunch 1012 2 

Number of bunches / beam -  1 

Beam-beam parameter / IP, 2 -  0.09 

RF voltage at 800 MHz MV 16 

Larger chromatic function (Wy) is corrected 
first with a single sextupole S1, Wx is 
corrected with two sextupoles S2, S4 
separated by 180° phase advance. 
 

Y. Alexahin 
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300 MW 

Estimate assumes  
a base 70MW  
Facility Power  
requirement as in  
LC analyses. 
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Luminosity 
Metric: 
 
Ndet ! Lavg / Ptot 

Muon 
Collider 



Muon Collider Parameters 
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Site Radiation 
mitigation with 
depth and lattice 
design:  $ 10 TeV 

Success of advanced cooling  
concepts " several ! 1032 

Exquisite Energy Resolution  
Allows Direct Measurement  
of Higgs Width 
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LBNE 
Buncher/ 

Compressor 
Rings 

To SURF 

Linac + RLA to ~5 GeV 

NF Decay Ring: 
!s to SURF 

Front End+4D+6D 

RLA to 63 GeV + 
300m Higgs Factory 

!STORM + Muon Beam 
R&D Facility 

40 

A 6 TeV collider  
of the same size 

as the Tevatron ring 
ft! ft!

A TeV-scale Collider 
at Fermilab 



MAP Timeline " Provide Informed Decision 
Points 

2010 ~2020 ~2030 

Muon Accelerator  
R&D Phase 

Proton Driver 
Implementation –  
Project X @ FNAL 

Intensity Frontier 

Energy Frontier 

MAP Feasibility 
Assessment 

Advanced 
Systems R&D 

Muon Ionization Cooling 
Experiment (MICE) 

IDS-NF 
RDR 

Proposed Muon Storage Ring 
Facility (!STORM) 

Evolution of Long Baseline ! Factory 

Collider Conceptual 
! Technical Design 

Collider Construction !  
Physics Program 

Pr X Stage I 

Pr X Stage II 

Pr X Stage III & IV 

At Fermilab, critical physics 
production could build on 

Stage II of Project X 

Indicates a date when 
an informed decision 
should be possible 
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THE R&D CHALLENGES AND  
THE MAP FEASIBILITY 
ASSESSMENT 
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Technology Challenges – Tertiary Production 
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Neuffer 

•  A multi-MW proton source, e.g., Project X, will enable  
O(1021) muons/year to be produced, bunched and cooled to 
fit within the acceptance of an accelerator. 

Key Technologies - Target 

•  The MERIT Experiment at the CERN PS 
–  Demonstrated a 20m/s liquid Hg jet injected  

into a 15 T solenoid and hit with a  
115 KJ/pulse beam!  

"  Jets could operate with beam powers up to  
 8 MW with a repetition rate of 70 Hz 

•  MAP staging aimed at initial 1 MW target 
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Hg jet in a 15 T solenoid 
with measured disruption 

length ~ 28 cm 

1 cm 



TechnoIogy Challenges – Capture Solenoid 

•  A Neutrino Factory and/or Muon Collider Facility requires 
challenging magnet design in several areas: 
–  Target Capture Solenoid (15-20T with large aperture)  

Estored ~ 3 GJ 
 
O(10MW) resistive  
coil in high radiation 
environment 
 
Possible application  
for High Temperature 
Superconducting 
magnet technology 
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Technology Challenges - Cooling 

•  Some components 
beyond state-of-art: 

–  Very high field HTS 
solenoids (%30 T) 

–  High gradient RF 
cavities operating 
in multi-Tesla fields 
 

September 19, 2013 Illinois Institute of Technology Physics Colloquium 46 

"#$#%&'(#)*+&,+-+.&&%/)0+.1-))#%+2#3/0)+*&+4#25.#+*1#+6"+'1-3#+
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R. Palmer 
Emittance 
Reduction 

via Ionization 
Cooling 

 

The program targets 
critical magnet and 
cooling cell technology  
demonstrations within 
its feasibility phase. 

Cooling  
Channel 
Concepts 

HCC 

Guggenheim 



Technology Challenges - Cooling 
•  Tertiary production of muon beams   

–  Initial beam emittance intrinsically large 
–  Cooling mechanism required, but no  

radiation damping 
•  Muon Cooling " Ionization Cooling  

•  dE/dx energy loss in materials 
•  RF to replace plong 
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Spectrometer 
Solenoids 

RF-Coupling 
Coil (RFCC)  

Units 

The Muon Ionization  
Cooling Experiment:  
Demonstrate the  
method and validate 
our simulations 
 

Elements of the R&D Program 
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Compressor + refrigerator room 

Entrance of MTA 
exp. hall 

MTA Hall 

201 MHz cavity 

SC magnet 400 MeV H- beam 

400 MeV  
H- Beam 

Gas-Filled RF cell 

20 MV/m in 3 Tesla 

Vacuum 
RF Cavity 



Recent Progress – Vacuum RF 
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•  Vacuum Tests at B = 0 T & B = 3 T 
–  Two cycles: B0 " B3 " B0 " B3 

•  No difference in maximum stable operating 
gradient 
–  Gradient  3 25 MV/m 

•  Demonstrates possibility of successful 
operation of vacuum cavities in magnetic 
fields with careful design 

•  Also progress on alternative cavity materials 

All-Seasons 
Cavity 

(designed for both  
vacuum and high  

pressure operation) 

Recent Progress - High Pressure RF 
•  Gas-filled cavity 

–  Can moderate dark current 
and breakdown currents in 
magnetic fields 

–  Can contribute to cooling 
–  Is loaded, however, by 

beam-induced plasma 

•  Electronegative Species 
–  Dope primary gas 
–  Can moderate the loading 

effects of beam-induced 
plasma by scavenging the 
relatively mobile electrons  
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Recent Progress -  High Field Magnets 
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Progress towards a demonstration of a final  
stage cooling solenoid: 
•  Demonstrated 15+ T (16+ T on coil) 

–  ~25 mm insert HTS solenoid  
–  BNL/PBL YBCO Design 
–  Highest field ever in HTS-only solenoid (by a factor of 

~1.5) 
•  Developing a test program for operating HTS insert 

+ mid-sert in an external solenoid " >30 T 
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BSCCO-2212 Cable -  
Transport measurements 
show that FNAL cable 
attains 105% Jc of that of 
the single-strand  

Multi-strand cable 
utilizing  chemically 
compatible alloy 
and oxide layer to 
minimize cracks  

Cooling Channel R&D Effort 
Successful Operation 

of 805 MHz “All 
Seasons” Cavity in 
3T Magnetic Field 

under Vacuum  
MuCool Test Area/Muons Inc 

World Record  
HTS-only Coil 
15T on-axis field 

16T on coil 
PBL/BNL 

Demonstration of 
High Pressure RF 

Cavity in 3T Magnetic 
Field with Beam 

Extrapolates to  
µ-Collider Parameters 

MuCool Test Area 

Breakthrough in HTS 
Cable Performance 

with Cables Matching 
Strand Performance 

FNAL-Tech Div 
T. Shen-Early Career Award 
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An Initial Acceleration Scheme:  
RLAs 
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RLA  I 

RLA  II 

Pre-linac 

244 MeV 900 MeV 

3.6 GeV 0.9 GeV 

3.6 GeV 12.6 GeV 

86 m 
0.6 GeV/pass 

202 m 

255 m 
2 GeV/pass 

S.A. Bogacz 

Technology Challenges - Acceleration 
•  Muons require an ultrafast accelerator chain 
#" Beyond the capability of most machines 

•  Solutions include:   
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!

•  Superconducting Linacs 
•  Recirculating Linear Accelerators (RLAs) 
•  Fixed-Field Alternating-Gradient (FFAG) 

Machines 
•  Rapid Cycling Synchrotrons (RCS) 

RCS requires  
2 T p-p magnets  
at f = 400 Hz 
(U Miss & FNAL) 

JEMMRLA Proposal: 
JLAB Electron Model of  
Muon RLA with Multi-pass  
Arcs  

Superconducting RF Development 
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Cavity going into test pit  
in Newman basement  
(Cornell University) 

Pit: 5m deep X 2.5m dia. 

400mm BT 

Cavity length: 2 m 

Major dia.: 1.4 m 
201 MHz SCRF R&D 



Technology & Design Challenges – Ring, Magnets, 
Detector 

•  Emittances are relatively large, but muons circulate for ~1000 
turns before decaying 
–  Lattice studies for 126 GeV,  

1.5 & 3 TeV CoM 
 

•  High field dipoles and  
quadrupoles must operate  
in high-rate muon decay  
backgrounds  
–  Magnet designs under study 
 

•  Detector shielding & performance 
–  Initial studies for 1.5 TeV, then 3 TeV and  

now 126 GeV 
–  Shielding configuration 
–  MARS background simulations 
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MARS energy 
deposition map 
for 1.5 TeV 
collider  dipole 

Backgrounds and Detector 
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Much of the background is soft 
and out of time 
•  Nanosecond time resolution 

can reduce backgrounds by 
three orders of magnitude 

Requires a fast, pixelated 
tracker and calorimeter. 

Non-ionizing background ~ 0.1 x LHC 
But crossing interval 10µs/25 ns  400 x  

GeV/c ns 

Cut Rejection 

Tracker hits 1 ns, 
dedx 

9x10-4 

Calorimeter 
neutrons 

2 ns 2.4x10-3 

Calorimeter 
photons 

2 ns 2.2x10-3 



CONCLUDING REMARKS 
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Some Thoughts… 
•  The unique feature of muon accelerators is the ability to provide 

cutting edge performance on both the Intensity and  Energy Frontiers 
–  This is well-matched to the direction specified by the P5 panel for Fermilab 
–  The possibilities for a staged approach make this particularly appealing in a 

time of constrained budgets 
–  !STORM would represent a critical first step in providing a muon-based 

accelerator complex"
 

•  World leading Intensity Frontier performance could be provided with a 
Neutrino Factory based on Project X Phase II 
–  This would also provide the necessary foundation for a return to the Energy 

Frontier with a muon collider on U.S. soil 

•  A Muon Collider Higgs Factory 
–  Would provide exquisite energy resolution to directly measure the width of 

the Higgs.  This capability would be of crucial importance in the MSSM 
doublet scenario. 

The first collider on the path to a  
multi-TeV Energy Frontier machine? 
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Conclusion 
•  Through the end of 

this decade, the 
primary goal of MAP 
is demonstrating the 
feasibility of key 
concepts needed for 
a neutrino factory 
and muon collider 

" Thus enabling an 
informed decision on 
the path forward for 
the HEP community 
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A challenging, but promising, R&D program is underway! 

Muon Accelerator Program Contacts 

•  MAP Web-Site:  http://map.fnal.gov/ 
•  MAP Management Team: 

 Mark Palmer, Director:  mapalmer@fnal.gov 
 Robert Ryne, L1 Manager for Design and Simulation: 
 rdryne@lbl.gov 
 Alan Bross, L1 Manager for Technology Development: 
 bross@fnal.gov 
 Daniel Kaplan, L1 Manager for Systems Demonstrations: 
 kaplan@iit.edu 
 Ron Lipton, L1 Manager for Detectors and Physics: 
 lipton@fnal.gov 

•  US HEP Community Planning Effort 
 Jean-Pierre Delahaye, Muon Accelerator Staging Study 
 jpd@slac.stanford.edu 
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