

Neutrinos from Stored Muons nuSTORM

Overview & Status

Intro....'

Y' know, every now and then I think you might like to hear something from me Nice and easy But there's just one thing You see I never ever do nothing Nice and easy I always do it nice and rough So I'm gonna take the beginning of this talk And do it easy Then I'm gonna do the finish rough This is the way I do

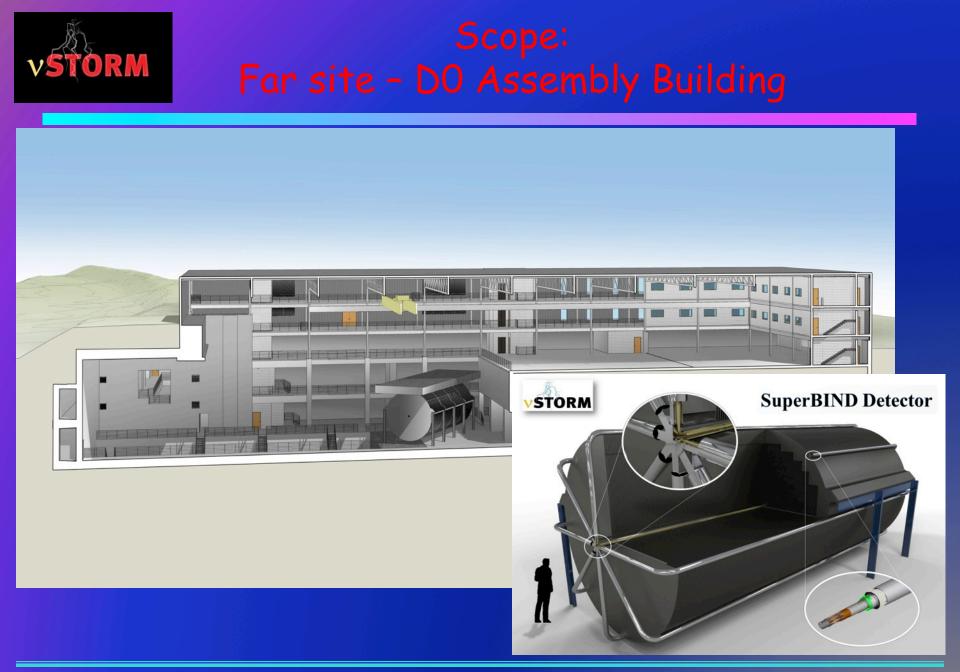
*With apologies to T.T.

nuSTORM: Siting



🛟 Fermilab

Alan Bross


Scope: nuSTORM Facility near site

μ decay ring: P = 3.8 GeV/c ± 10%

Alan Bross

🛟 Fermilab

Alan Bross

nuSTORM Workshop, Fermilab

November 21st, 2013

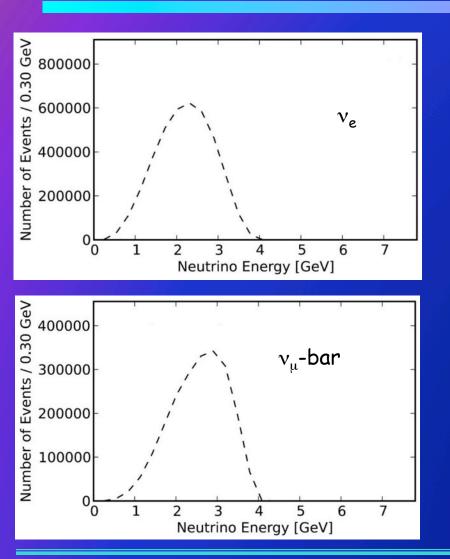
 \succ Addresses the SBL, large $\delta m^2 v$ -oscillation regime Provides a beam for precision v interaction physics (GeV-scale high-statistics v_e & anti- v_e data for the First Time) > Approach 0.1% uncertainty on flux & spectrum Accelerator & Detector technology test bed > Potential for intense low energy muon beam > Provides for µ decay ring R&D (instrumentation) & technology demonstration platform > Provides a v Detector Test Facility

-erm

v flux

Based on 10²¹ 120 GeV POT, we obtain ~ 1.9 X 10¹⁸ useful μ decays

In PIP era, extract one Booster batch/ cycle (10²⁰ POT/yr → 10 year run)

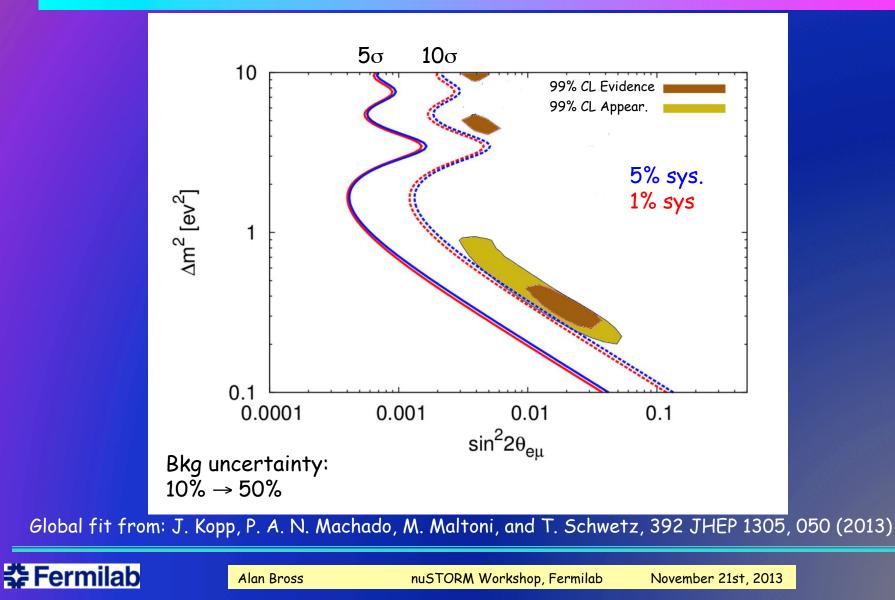

Baseline FODO ring, C target, NUMI style 1 horn

Inconel target + horn optimization + RFFAG → X5 (2 year run)

E_v spectra (3.8 GeV/c μ⁺ stored)

Event rates/100T at ND hall 50m from straight with μ^+ stored for 10²¹ POT exposure

Channel	$N_{\rm evts}$
$\bar{\nu}_{\mu}$ NC	844,793
$\nu_e { m NC}$	$1,\!387,\!698$
$\bar{\nu}_{\mu}$ CC	$2,\!145,\!632$
$\nu_e \ {\rm CC}$	$3,\!960,\!421$

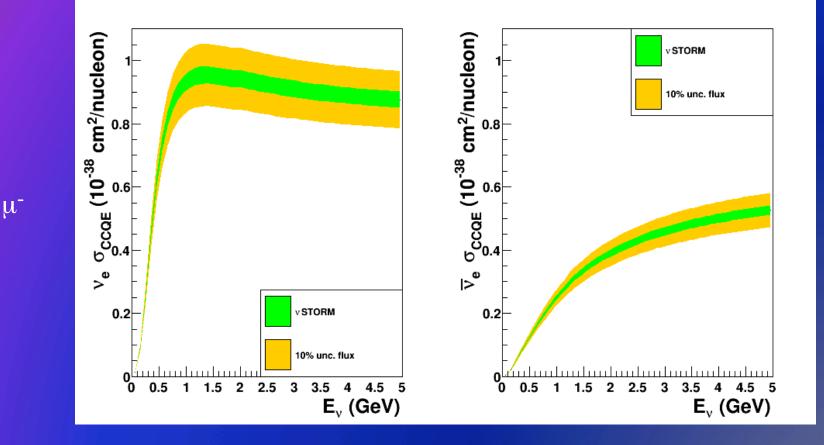

Event rates at Far detector

Channel	Nosc.	N _{null}	Diff.	$(N_{\rm osc.} - N_{\rm null})/\sqrt{N_{\rm null}}$
$\nu_e \rightarrow \nu_\mu \text{ CC}$	332	0	∞	∞
$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu} \operatorname{NC}$	47679	50073	-4.8%	-10.7
$\nu_e \rightarrow \nu_e \ \mathrm{NC}$	73941	78805	-6.2%	-17.3
$\bar{\nu}_{\mu} ightarrow \bar{\nu}_{\mu} \operatorname{CC}$	122322	128433	-4.8%	-17.1
$\nu_e \rightarrow \nu_e \operatorname{CC}$	216657	230766	-6.1%	-29.4

🛟 Fermilab

Alan Bross

Appearance: Exclusion contours v_e → v_u (CPT invariant mode of LSND)



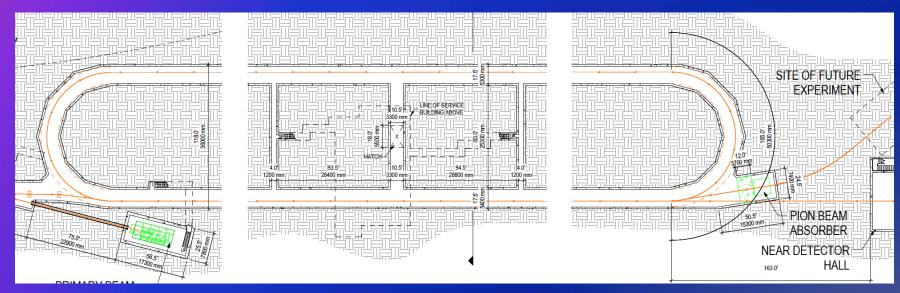
)RM

9

Cross section measurements - v

The search for CP in LBL expts. counts v_e and anti- v_e events (flux X xsection) Note: not shown here v_e (200 evts) and v_e -bar (60 evts) inclusive xsection data (1978)

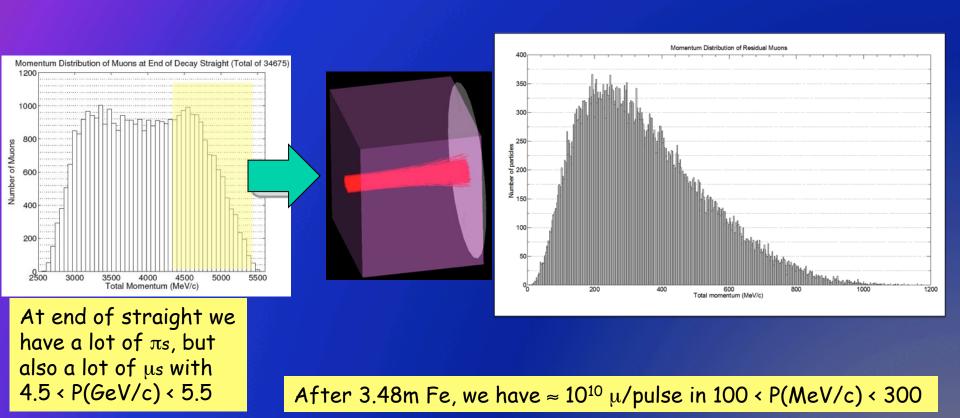
🛟 Fermilab


Alan Bross

nuSTORM Workshop, Fermilab

 μ^+

nuSTORM Setting the stage for the next step


Capture and inject πs with P=5 GeV/c ± 10% Only ~50% of πs decay in straight Need π absorber

Note: injection produces a v_{μ} "flash" from $\pi \rightarrow \mu v_{\mu}$ decay = integrated flux of the neutrinos from μ decay

Low Energy µ beam

🛟 Fermilab

Alan Bross

nuSTORM Workshop, Fermilab

November 21st, 2013

What makes nuSTORM unique, and how does fit in the overall picture of this area?

Alan Bross

nuSTORM Workshop, Fermilab

November 21st, 2013

What makes nuSTORM unique

The Physics:

- Can confirm/exclude at 10 (CPT invariant channel) the LSND/ MiniBooNE result
 - > Only experiment that has access to appearance & disappearance for both ν_{μ} and ν_{e} , neutrino and anti-neutrino
- v interaction physics studies with near detector(s) offer a unique opportunity & can be extended to cover 0.2< E_v(GeV) < 4</p>
 - Could be "transformational" w/r to v interaction physics
 - > Unique opportunities for v_e interaction studies
 - For this physics, nuSTORM should really be thought of as a facility: A v "light-source" is a good analogy
 - nuSTORM provides the beam & users will bring their detector to the near hall

The Facility:

)RM

- Although it only needs very manageable extrapolations from existing technology
 - > It can explore new ideas regarding beam optics and instrumentation

Offers opportunities for extensions

- > Add RF for bunching/acceleration/phase space manipulation
- Provide µ source for 6D cooling experiment with intense pulsed beam

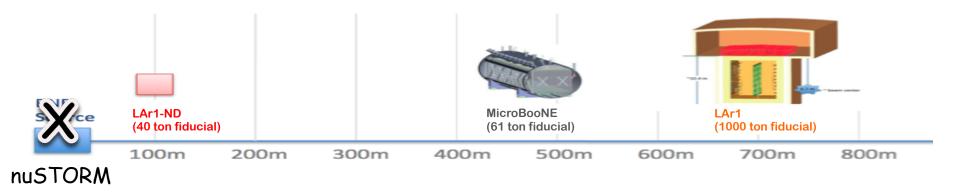
Three Pillars of nuSTORM

Delivers on the physics for the study of sterile v

- Prepare for discovery, have a plan for machines that can exploit it." nuSTORM is preeminent in this regard w/r to sterile neutrinos
- Offers a new approach to the production of v beams setting a 10^o benchmark to make definitive statement w/r LSND/ MiniBooNE
 - > Only facility that can do appearance & disappearance for ν and anti- ν
- Can add significantly to our knowledge of v interactions, particularly for v_e
 - → v "Light Source"
 - Provides an accelerator science test facility

🛟 Fermilab

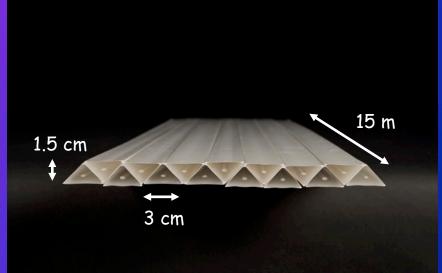
BUT, we have new hurdles to overcome

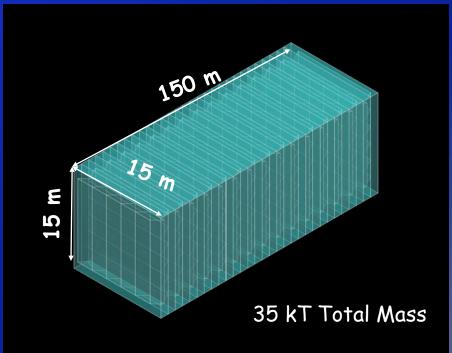

> New Administration

- "Need relevant SBL program"
 - > Also, v interaction physics will be done @ LBNE
- Frontier" muon facilities in the far distant future
- "Costing not believable"

LArI-ND:

Testing Neutrino Anomalies with Multiple LArTPC Detectors at Fermilab


Contact: B. Fleming, Yale University O. Palamara, Yale University D. Schmitz, University of Chicago



Fine-Resolution Totally Active Segmented Detector (IDS-NF)

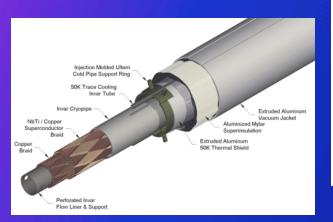
Simulation of a Totally Active Scintillating Detector (TASD) using Nova and Minerva concepts with Geant4

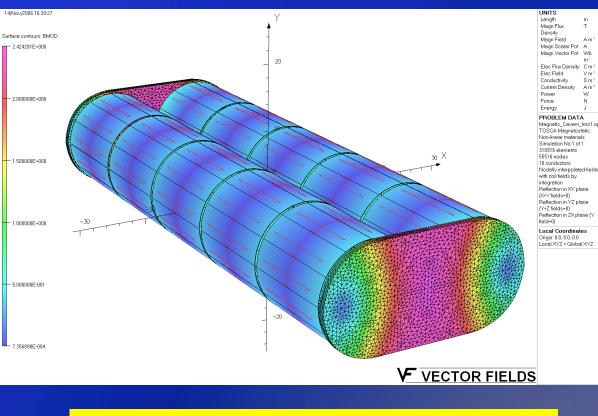
- 3333 Modules (X and Y plane)
- Each plane contains 1000 slabs
- Total: 6.7M channels

- Momenta between 100 MeV/c to 15 GeV/c
- Magnetic field considered: 0.5 T
- Reconstructed position resolution ~ 4.5 mm

🛟 Fermilab

Alan Bross


nuSTORM Workshop, Fermilab


November 21st, 2013

B = 0.5T

- VLHC SC Transmission Line
 - > Technically proven
 - Affordable

vSTORM

R&D to support concept Has not been funded

1 m iron wall thickness. ~2.4 T peak field in the iron. Good field uniformity

🛟 Fermilab

Alan Bross

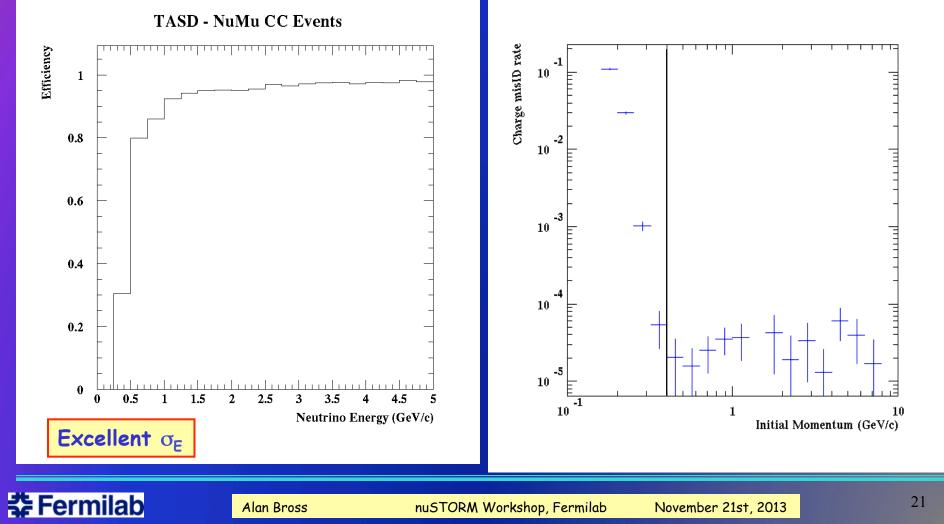
nuSTORM Workshop, Fermilab

November 21st, 2013

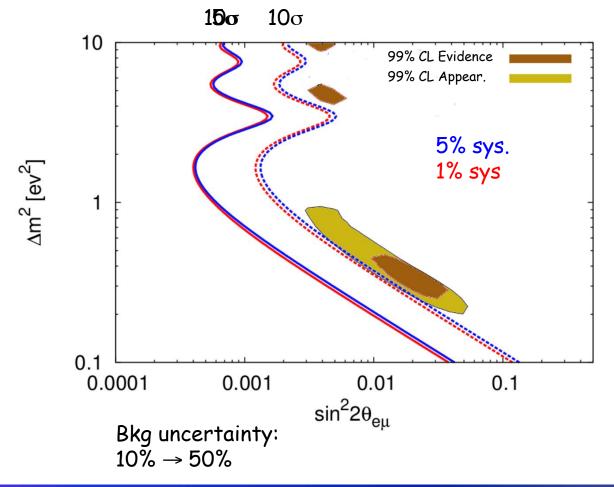
Am

Vm

Sm


Ami

TASD Performance


v Event Reconstruction ϵ

STORM

Muon charge mis-ID rate

Appearance: Exclusion contours $_{e} \rightarrow v_{\mu}$ (CPT invariant mode of LSND)

Integrated recon. Eff: 17% -> 80+% SuperBIND -> MLAr

Global fit from: J. Kopp, P. A. N. Machado, M. Maltoni, and T. Schwetz, 392 JHEP 1305, 050 (2013)

🛟 Fermilab

)RM

Detector Options

Technology check List

	Fid Volume	В	Recon	Costing Model
SuperBIND				
Mag-TASD				
Mag-LAr		☑ -> ☑	☑ -> ☑	☑ -> ☑

Yes - OK
Maybe
Not Yet

Alan Bross

nuSTORM: Total Project Cost

Subsystem	Base cost	Contingency	Cost
Proton beam line	21,143,940	7,356,253	28,500,193
Target Station	26,674,694	11,225,150	37,899,844
Capture/transport	10,811,010	5,681,943	16,492,953
Decay ring	89,248,924	45,956,474	135,205,398
Near detector hall	16,778,572	6,711,429	23,490,001
Far detector hall	1,182,581	650,420	1,833,001
SuperBIND	21,057,070	4,190,528	25,247,598
Site work	17,429,678	9,586,323	27,526,000
CF other	1,804,286	721,714	2,526,000
TOTAL	206,130,755	92,080,233	298,210,988
Management			37,080,186
TPC		45% contingency	335,291,175

Total contingency - 45%

¹Near Hall sized for multiple experiments & ND for SBL oscillation physics ²1.3kT Far + .2kT Near & include DAB work ³Assumes LBNE estimates: Proj. Office (10%), L2 (9.4%), L3 (4%)

Conventional Facilities

			EDIA	Contingency			
WBS	Functional Area	Base Cost	30%	%	\$	Indirects	Totals
1.0	Primary Beamline Enclosure	\$7,013,000	\$2,104,000	40%	\$3,647,000	\$1,266,000	\$14,030,000
2.0	Target Station	\$8,993,000	\$2,698,000	55%	\$6,430,000	\$1,662,000	\$19,783,000
3.0	Transport Line Enclosure	\$1,883,000	\$565,000	60%	\$1,469,000	\$504,000	\$4,421,000
4.0	Muon Decay Ring Enclosure	\$26,002,000	\$7,801,000	60%	\$20,282,000	\$4,215,000	\$58,300,000
5.0	Near Detector	\$11,750,000	\$3,525,000	40%	\$6,110,000	\$1,882,000	\$23,267,000
6.0	Far Detector	\$720,000	\$216,000	55%	\$515,000	\$333,000	\$1,784,000
8.0	Site Work	\$12,233,000	\$3,670,000	55%	\$8,747,000	\$2,115,000	\$26,765,000
	TOTALS	\$68,594,000	\$20,579,000		\$47,200,000	\$11,977,000	\$148,350,000

Overall contingency on Base Cost + EDIA - 53%

If you don't believe this, then you should not believe the costs for $\mu 2e$ or LBNE

LBNE started with approximately 40% contingency on CF -> 25% once drawings done

If 53% is unbelievable, then our "Flagship" is likely to become the Titanic

nuSTORM: Total Project Cost

Subsystem	Base cost	Contingency	Cost
Proton beam line	21,143,940	7,356,253	28,500,193
Target Station	26,674,694	11,225,150	37,899,844
Capture/transport	10,811,010	5,681,943	16,492,953
Decay ring	89,248,924	45,956,474	135,205,398
Near detector hall	16,778,572	6,711,429	23,490,001
Far detector hall	1,182,581	650,420	1,833,001
SuperBIND	21,057,070	4,190,528	25,247,598
Site work	17,429,678	9,586,323	27,526,000
CF other	1,804,286	721,714	2,526,000
TOTAL	206,130,755	92,080,233	298,210,988
Management			37,080,186
TPC		45% contingency	335,291,175

Total contingency - 45%

¹Near Hall sized for multiple experiments & ND for SBL oscillation physics ²1.3kT Far + .2kT Near & include DAB work ³Assumes LBNE estimates: Proj. Office (10%), L2 (9.4%), L3 (4%)

Association for the Advancement of Costing Engineering (AACE)

Developing the Cost Range

Bob O'Sullivan

	Primary Characteristic	Secondary Characteristic			
ESTIMATE CLASS	DEGREE OF PROJECT DEFINITION Expressed as % of complete definition	END USAGE Typical purpose of estimate	METHODOLOGY Typical estimating method	EXPECTED ACCURACY RANGE Typical variation in low and high ranges ^[8]	
Class 5 0% to 2%		Concept screening	Capacity factored, parametric models, judgment, or analogy	L: -20% to -50% H: +30% to +100%	
Class 4	1% to 15%	Study or feasibility	Equipment factored or parametric models	L: -15% to -30% H: +2 <u>0% to +50</u> %	
Class 3	10% to 40%	Budget authorization or control	Semi-detailed unit costs with assembly level line items	C: -10% to -20% H: +10% to +30%	
Class 2	30% 10 70%	Control or bid/tender	Detailed unit cost with forced detailed take-off	L: -5% to -15% H: +5% to +20%	
Class 1	70% to 100%	Check estimate or bid/tender	Detailed unit cost with detailed take-off	L: -3% to -10% H: +3% to +15%	

LBNE CD-1 Director's Review - 25-27 September 2012

16

Magnets present largest uncertainty. Even if we let contingency go to to 100%, this only adds ~ \$25M to the TPC

🛟 Fermilab

Moving Forward

Continue work to generate TDR Facility

- Decay Ring
 - Pursue in parallel FODO and RFFAG
 - But, try to reach "a" solution ASAP in order to accurately determine nuSTORM's ability to determine v flux (intensity & spectrum)

 \succ Biggest impact on v interaction physics program

Detector (SBL osc physics)

> Time to move to MLAr?

Too Hard?

