#### **NuStorm Facility Status at Fermilab**



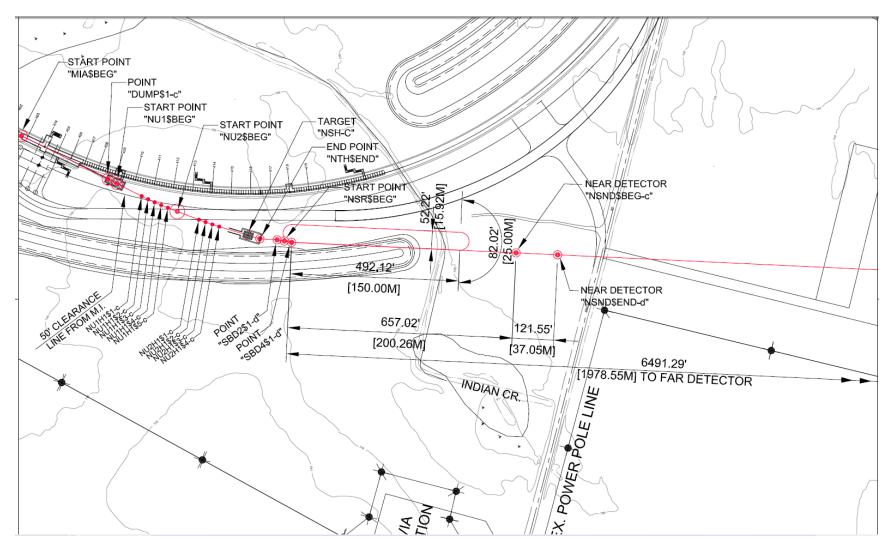




#### **NuStorm Facility Status at Fermilab**

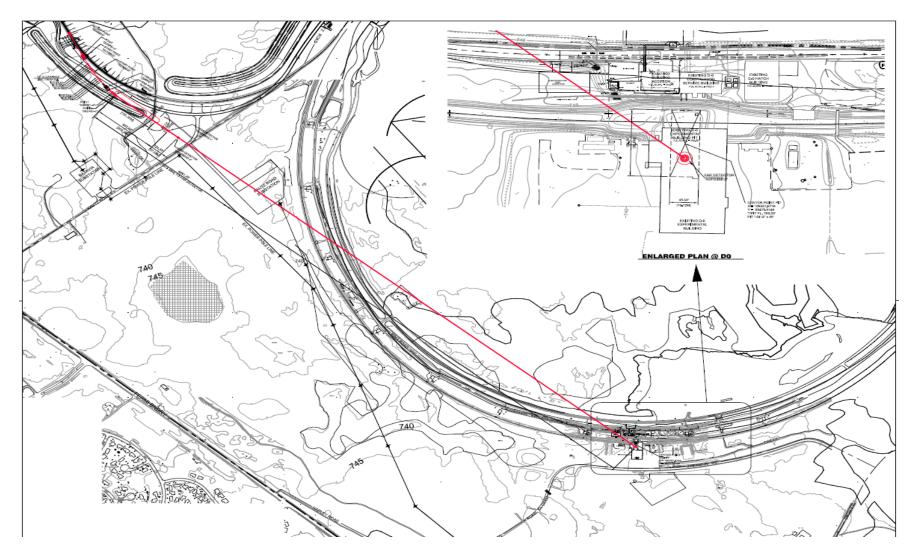
- Location of Facility
- Primary Beamline
- MI Abort Line Reconfiguration
- Extraction




## **Location of Facility**



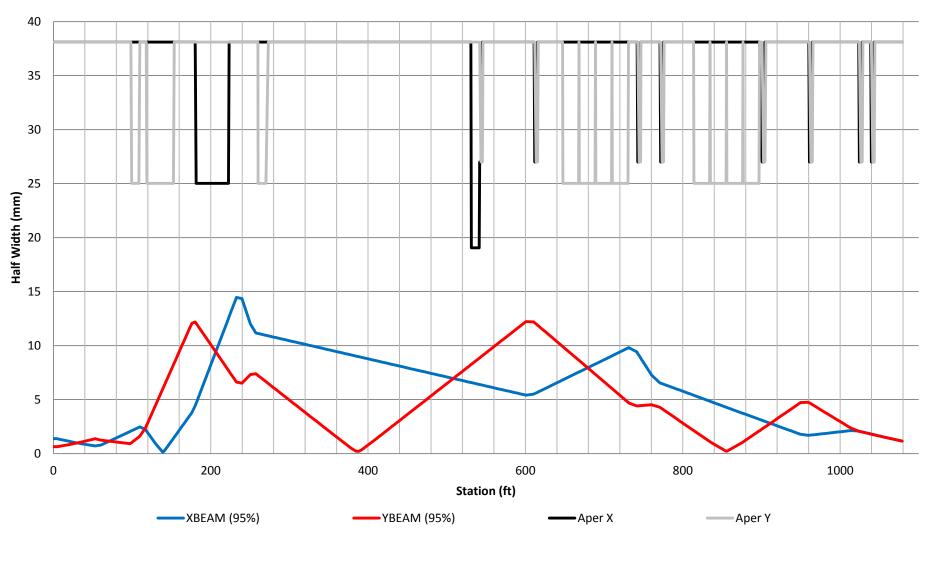





# **Location of Facility**



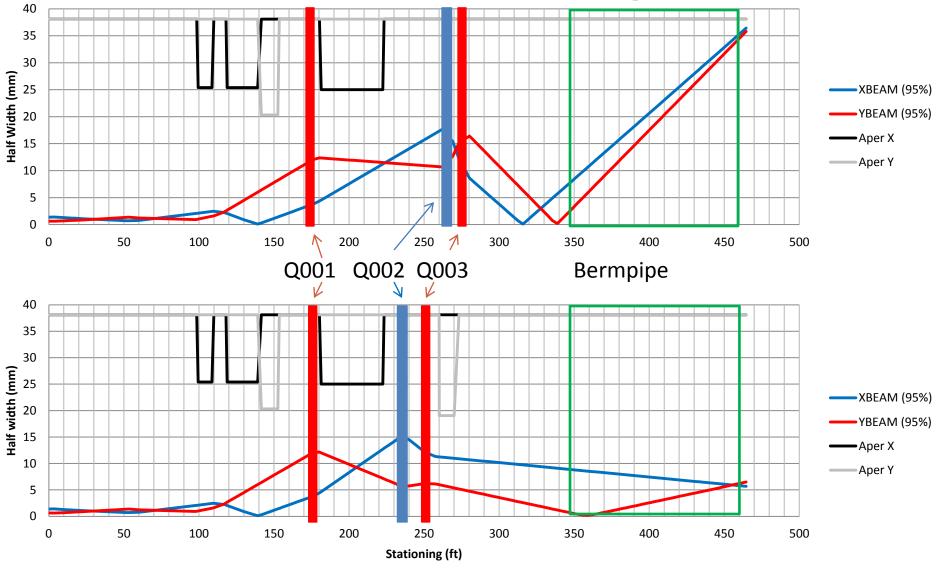



## **Location of Facility**








## **NuStorm Primary Beamline**



11/21/2013

🛟 Fermilab

Michael Geelhoed AD EBD

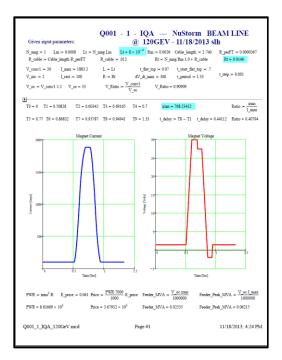


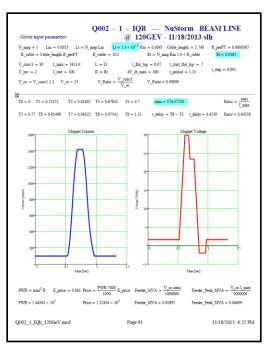
11/21/2013

🛟 Fermilab

Michael Geelhoed AD EBD




| Current (Amps) | Present | Future |
|----------------|---------|--------|
| Q001           | 2770.5  | 1883.2 |
| Q002           | 2828.0  | 1423.9 |
| Q003           | 2770.5  | 853.0  |

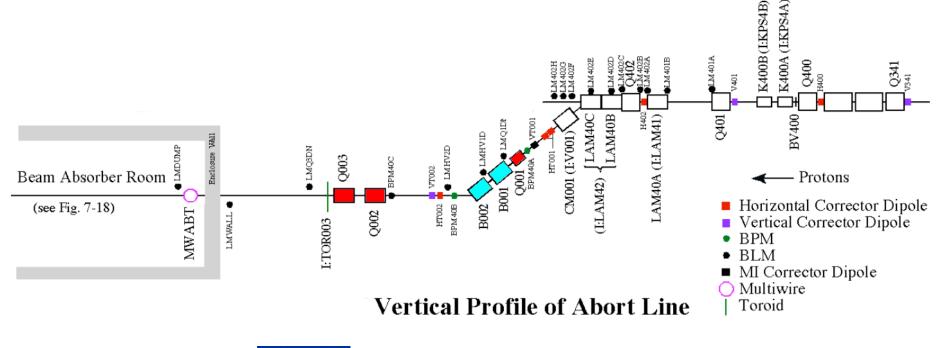

Move Q002 and Q003 upstream by 30' and 23', along with different currents, NS/Abort beam reduces in size through the bermpipe





| Current (Amps) | Present | Future |
|----------------|---------|--------|
| Q001           | 2770.5  | 1883.2 |
| Q002           | 2828.0  | 1423.9 |
| Q003           | 2770.5  | 853.0  |








#### Compiled from Steve Hays\*



| Current (Amps) | Present | Future |
|----------------|---------|--------|
| Q001           | 2770.5  | 1883.2 |
| Q002           | 2828.0  | 1423.9 |
| Q003           | 2770.5  | 853.0  |





| Current (Amps) | Present | Future |
|----------------|---------|--------|
| B2             | 2964.1  | 2964.1 |

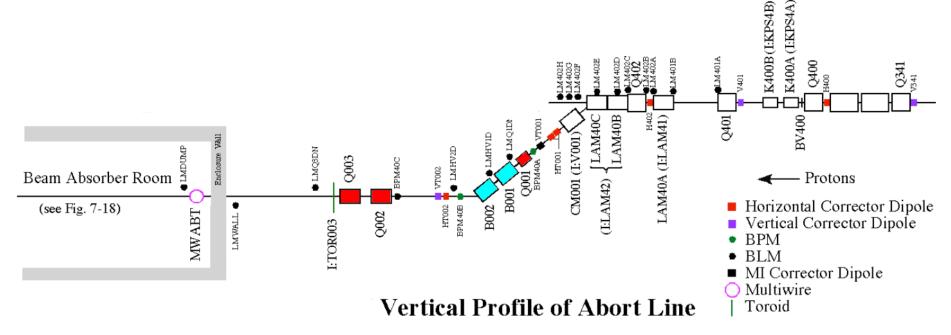


|                                                                                                                                                                     | AB2A -                                                                                                          | 1 - B2 NuStorm BEAM LINE                                                                                                              |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Given input parameters:                                                                                                                                             |                                                                                                                 | @ 120GEV - 11/18/2013 slh                                                                                                             |  |  |  |
| N_mag := 2                                                                                                                                                          |                                                                                                                 | = 0.016 Rm := 0.0072 Cable_length := 2.740 R_perFT := 0.0000367<br>Rt := N_mag.Rm.1.0 + R_cable Rt = 0.0264                           |  |  |  |
| V_conv1 := 150 I_max := 2964.1                                                                                                                                      | L := Lt                                                                                                         | t_flat_top := 0.07 t_start_flat_top := .7                                                                                             |  |  |  |
| V_inv := 100 I_rest := 100                                                                                                                                          | $\mathbf{R} := \mathbf{R}\mathbf{t}$                                                                            | dV_dt_max := 1500 t_period := 1.33 t_step := 0.001                                                                                    |  |  |  |
|                                                                                                                                                                     | $V\_oc := V\_conv1 \cdot 1.1  V\_oc = 165 \qquad V\_Ratio := \frac{V\_conv1}{V\_oc} \qquad V\_Ratio := 0.90909$ |                                                                                                                                       |  |  |  |
| T0 = 0 T1 = 0.19026 T2 = 0.2885                                                                                                                                     | T3 = 0.65217                                                                                                    | T4 = 0.7 $\operatorname{irms} = 1.68235 \times 10^3$ Ratio := $\operatorname{irms} \frac{\operatorname{irms}}{\operatorname{I} \max}$ |  |  |  |
| T5 = 0.77 T6 = 0.88883 T7 = 1.1303                                                                                                                                  | 8 T8 = 1.19881                                                                                                  | T9 = 1.33 t_delay := T8 - T1 t_delay = 1.00854 Ratio = 0.56757                                                                        |  |  |  |
| 3000 Magnet Curr                                                                                                                                                    | ent                                                                                                             | 2007 Magnet Voltage                                                                                                                   |  |  |  |
|                                                                                                                                                                     |                                                                                                                 |                                                                                                                                       |  |  |  |
| 2500                                                                                                                                                                |                                                                                                                 | 150                                                                                                                                   |  |  |  |
|                                                                                                                                                                     |                                                                                                                 | 100                                                                                                                                   |  |  |  |
| 2000                                                                                                                                                                |                                                                                                                 |                                                                                                                                       |  |  |  |
| (du )<br>1500                                                                                                                                                       | ↓                                                                                                               | (alba (Vala)                                                                                                                          |  |  |  |
| ő                                                                                                                                                                   | 1                                                                                                               |                                                                                                                                       |  |  |  |
| 1000                                                                                                                                                                |                                                                                                                 | -50                                                                                                                                   |  |  |  |
| 500-                                                                                                                                                                |                                                                                                                 | - 100                                                                                                                                 |  |  |  |
|                                                                                                                                                                     |                                                                                                                 | - 100-                                                                                                                                |  |  |  |
| 0 0.5<br>Time [Sec]                                                                                                                                                 | -                                                                                                               |                                                                                                                                       |  |  |  |
| $PWR = ims^3 R  E\_price = 0.061 \text{ Price} = \frac{PWR.7000}{1000} E\_price  Feeder\_MVA := \frac{U\_oc.ims}{100000}  Feeder\_MVA := \frac{U\_oc.ims}{1000000}$ |                                                                                                                 |                                                                                                                                       |  |  |  |
|                                                                                                                                                                     | 1000                                                                                                            | <sup>4</sup> Feeder_MVA = 0.27759 Feeder_Peak_MVA = 0.48908                                                                           |  |  |  |
| Q003_1_IQB_120GeV.mcd                                                                                                                                               |                                                                                                                 | Page #1 11/18/2013; 4:34 PM                                                                                                           |  |  |  |
|                                                                                                                                                                     |                                                                                                                 |                                                                                                                                       |  |  |  |

#### Compiled from Steve Hays\*



Michael Geelhoed AD EBD


With these changes we are pursuing an Accelerator Improvement Project, or AIP. This AIP will be many focused on converting the Abort line magnets to their own individual power supplies. Currently there are multiple AIPs majority for the Muon Campus here at Fermilab.

- Cryo AIP (Muon Campus)
- Muon Campus Beam Transport
- Muon Campus Delivery Ring AIP
- Muon Campus Recycler RF AIP
- MI Gap Clearing Kickers

Each AIP has a written document called a Project Execution Plan, or PEP. With these calculations completed by Steve Hays of AD Electrical Engineering, we can continue this effort. Currently we are starting to gather this information and propose to AD that the purpose of this AIP is for twofold. First create a simplified extraction line for MI, and second have tunable magnets for NuStorm in the future.

This AIP requires \$105,000 for the power supply, cabling, and electricians. Not all details though have been worked out i.e. location of power supplies, control cards, etc.



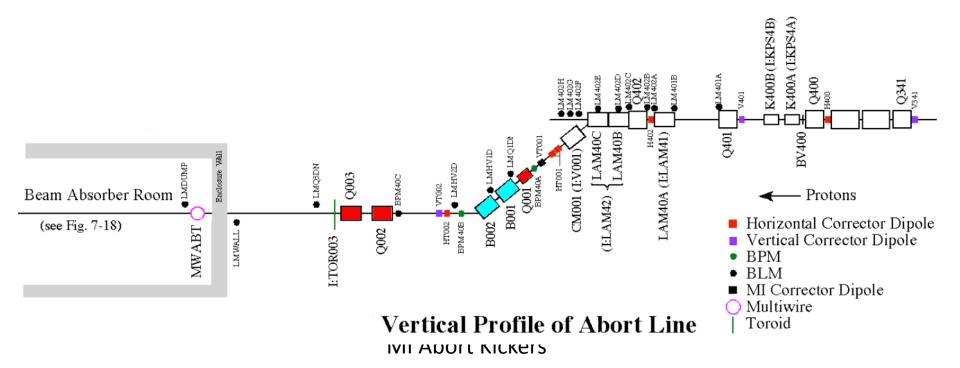


Currently MI Abort line has 2 "long" kickers for extraction. These kickers are for full turn at flattop ~5%. NuStorm does not require this type. It requires 3 partial turn kickers such as LBNE style or "short" kickers ~1%.








**MI Abort Kickers** 

#### In order to use the short kickers these two long kickers will need to be moved creating a new bend center...

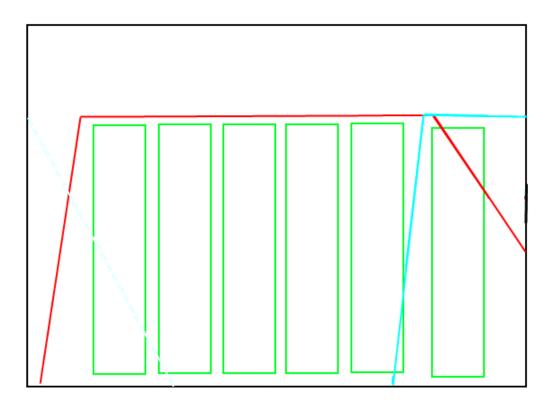




Michael Geelhoed AD EBD



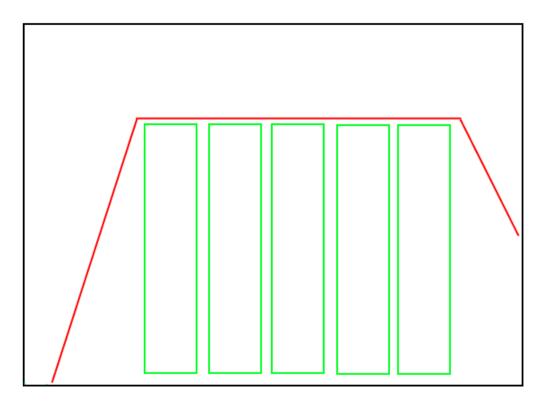
In order to use the short kickers these two long kickers will need to be moved creating a new bend center...






LBNE MI Beam in Booster Batches








NuStorm Beam extraction at the end deflects the last NuMI/LBNE Beam using Abort Kickers







NuStorm Beam extraction at the beginning with fast rise and fall time kicker doesn't deflect NuMI or LBNE Beam. Basically we are recreating our MI-52 kicker scenario for Collider Operation



#### **NuStorm Facility Status at Fermilab**

#### Needs to be done

- Continue AIP via PEP document
- Research more on Kicker configuration





# **Thank You**

Special thanks to: Steve Hays, Chris Jensen

11/21/2013



Michael Geelhoed AD EBD

Photo by Marty Murphy









With these changes we are pursuing a Accelerator Improvement Project, or AIP. This AIP will be many focused on converting the Abort line magnets to their own individual power supplies. Currently there are multiple AIPs for the Muon Campus here at Fermilab.

- Cryo AIP (Muon Campus) (\$9.74M)
- Muon Campus Beam Transport
- Muon Campus Delivery Ring AIP
- Muon Campus Recycler RF AIP (\$8.6M)
- MI Gap Clearing Kickers (\$4.4M)

Each AIP has a written document called a Project Execution Plan, or PEP. With these calculations completed by Steve Hays of AD Electrical Engineering, we can continue this effort. Currently we are starting to gather this information and propose to AD that the purpose of this AIP is for twofold. First create a simplified extraction line for MI, and second have tunable magnets for NuStorm in the future.

This AIP requires \$105,000 for the power supply, cabling, and electricians. Not all details though have been worked out.



LBNE has cost estimated ~\$6.7 M for 5 kicker magnets fully loaded.

