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Available v Physics with a Muon Storage Ring

Boosted decays; ut — etver, and p= — e vev,
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Physics Potential at nuSTORM
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Physics Potential at nuSTORM

Neutrino Oscillation Program at vYSTORM

@ vSTORM accepts muons of a single charge i in the ring.
@ Requires two detectors: Eg. 200 Ton at 50 m, 1.3 kTon at 2 km.

Oscillation Channels for Stored x with 102" POT

Channel Osc. S B (S-B)/VS+¥B
v, Appearance Ve — Uy 332 0 18.2
v, Disappearance Uy — vy 122322 | 128433 -12.2
ve Disappearance Ve — Vg 216657 | 230766 -21.1
NC Disappearance | v, — 7, NC | 47679 | 50073 7.7
NC Disappearance | ve — v NC | 73941 | 78805 -12.4

@ All channels will be available (ve appearance not shown).
@ Muons are easy to detect and identify by charge.

@ Appearance has a clean signal relative to disappearance.
@ Focus has been on v, appearance.
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A Potential Magnetized Iron Neutrino Detector

M ’ a%@iy  SuperBIND Detector

@ 1.5 cm steel planes @ 1.5 cm thick sci. planes

Ryan Bayes (University of Glasgow) Oscillation Physics November 21, 2013 5/15



SuperBIND Simulation and Reconstruction

40 Fitted Events; v, CC sample

Simulation
@ v events Simulated in GENIE

@ Particles tracked using GEANT4
simulation of detector.
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@ Hits clustered into 1x1 cm? units. o
@ Energy smeared and attenuated. N 7 postion (m)

-

Pattern Recognition and Reconstruction
@ Relies on Kalman filtering/fitting algorithm.
@ Multiple tracks fit by program.
@ Determines the charge and momentum of all tracks.

@ Longest track is muon.
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Analysis for SuperBIND

@ Use multiple variables for signal discrimination.
@ TMVA methods assumed to properly account for correlations.
@ Reduces multiple variables into one classifier variable.

Variables for MVA

Variable

Description

TMVA response for classifier: BDT

TMVA

12 (T Signar T

Track Quality

Hits in Trajectory

Mean Energy De-
position
Variation
ergy

in En-

Q

oq/p/(q/p), the error in the
trajectory curvature scaled
by the curvature
The number of hits in the tra-
jectory
Mean of energy deposition of
hits in fit of the trajectory

N/2 N

i=0 AE,-/ Zj:N/2AE/
where the energy deposited
per hit AE; < AEj4q.
Muon isolation @
P sin?6,
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Appearance Event Selection

Signal Efficiency Background Efficiencies
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@ Optimization completed with S/v/S + B FOM with BDT method.
@ Restrictive signal selection set by sensitivity requirements.
@ Ideal sensitivity results with background rejection of 10~4.
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nuSTORM Sensitivity to v, Appearance

Expected Rates Sensitivity Contours
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Disappearance Event Selection

Signal Efficiency Background Efficiencies
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@ Optimized an MLP boosted neural network with a x?

e Maximize difference between sterile and null hypotheses.
e Spectral information used in optimization.

@ Less restrictive selection allowed by greater signal significance.
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nuSTORM Sensitivity to 7, Disappearance

Expected Rates Sensitivity Contours
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Near Detector Simulations

@ Near detector not included in disappearance sensitivity.
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@ Detector subtends 0.022(0.119) rad from end(beginning) of
straight.

@ Beam spectrum not in current simulation.
@ Requires neutrino interaction simulation in context.
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Near-Far Extrapolation

@ Different methods used for Near Detector predictions.

Simultaneous fit of Near and Far Detectors
@ Used for reactor experiment fits.

Predict far detector rate Ngp from near detector rate:

NFD = MFDPosc(914a '9247 Am124)MﬂOSCMNE1)NND

@ MEgn)p: cross-section and response of far(near) detector.

@ M, 0sc: relationship between near det. 7, flux and far det. 7, flux.
® Posc(014, 024, AM?,): oscillation probability.

@ Ngp: The measured near detector rate.

v

Ryan Bayes (University of Glasgow) Oscillation Physics November 21, 2013 13/15



Analysis Requirements for Shower Events

@ Some guidance provided by MINOS v, oscillation search.

Algorithm for Shower Identification

@ Preselection excludes muon tracks.

o Remove events with threshold number of track-like planes
e Remove events with threshold number of planes

@ Select events with showers
@ occupying a more than 5 contiguous planes
e matching a particular energy loss profile.

@ v CC and NC pre-selection tuned differently.

@ Further application of multi-variate or LEM methods to be
determined.

@ v, CC methods will be described in detail by David Adey
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Summary

@ Five potential channels for sterile oscillations are accessible at
nuSTORM

e Advanced v, appearance analysis.

e Work remains on a 7,, disappearance analysis.

Early days for a v, disappearance analysis.

o A i, appearance analysis is not practical.

o A neutral current oscillation analysis is under consideration.

@ A more complete near detector simulation is in progress.

@ Inclusion of detector geometry and beam divergence in GENIE
simulation required.

o Essential for 7, CC and NC disappearance searches.

o Not necessary for appearance analysis.

@ New algorithms must be developed for shower reconstruction in
context of SuperBIND for NC and v CC disappearance.
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