Charge Discrimination in Liquid Argon Time Projection Chamber (LArTPC)

Caroline Guimarães York University

Scott Menary, Nariman Khazai, Andrea Capra

redefine тне POSSIBLE.

General Remarks

- Main motivation: To be able to use LArTPC
- Charge discrimination needed for neutrino oscillation physics:

- LArSoft = Software designed for liquid argon experiments at Fermilab.

Detector in LArSoft

MicroBooNE's
liquid Argon time projection chamber:

Ideal B field along y.

Detector plane is $x z$.

Muon Events

- Bending direction generally easy to identify:

- Particles are also affected by multiple scattering, which can be significant at low momenta

> Negative charge - bends up

Positive charge - bends down

Electron/Positron Events

- Charge discrimination can be much more challenging!

- EM showers \rightarrow difficult to determine bending direction
- Focus on parent particle

Algorithm Objective

- To determine whether parent particle bent up or down
- Look at parent particle only
- Determine maximum displacement along x direction

Algorithm Development

- More generalized scenario - Particle's momentum not exclusively along z direction:

- Solution: Rotate coordinate system along original momentum direction

Algorithm Development

- Goal: Rotate coordinate system along original momentum direction

Correct particle ID obtained!

- Implementation?

Implementation

- Each point can be translated into the rotated coordinate system:

$$
\begin{gathered}
x^{\prime}=-\sin \theta z+\cos \theta x \\
z^{\prime}=\cos \theta z+\sin \theta x
\end{gathered}
$$

- Must determine rotation angle, θ :
- Perform a least-squares fit to the first few points of each track to obtain original direction

Slope of line $=\tan \theta$

Algorithm Development

- Structure of resulting code:

```
for (i=1, i< last_point, i++) {
Xposition = x[i]- x[0];
Zposition = z[i] - z[0];
X'position = -sin}(0)*\mathrm{ Zposition + }\operatorname{cos}(0)*\mathrm{ Xposition;
    if( std:abs(X'position) > std::abs(Max\DeltaX) ){
        Max\DeltaX = X'position;
    }
}
```

if(Max\DeltaX > 0){

```
if(Max\DeltaX > 0 ){
    Number_electrons = Number_electrons + 1;
    Number_electrons = Number_electrons + 1;
} else {
} else {
    Number_positrons = Number_positrons + 1;
    Number_positrons = Number_positrons + 1;
}
```

```
}
```

```
    Loops through all the points in each event

Obtains the \(X\) coordinate for each point after rotation

\section*{Checks for maximum \\ displacement along \(X\) \\ Checks for maximum displacement along \(X\)}

\section*{Optimizing the Fit}
- Must determine number of points to fit through, \(N\)
- More points = generally more accurate, but particle bends
- Use two parameters to determine quality of fit:
- RMS Residual:
\[
\text { RMSResidual }=\frac{\sqrt{\sum_{i=1}^{N}(\operatorname{Xposition}(i)-\operatorname{Xfit}(i))^{2}}}{N}
\]
- Angle Discrepancy:
\[
\text { Angle Discrepancy }=\text { Angle from Fit }- \text { Angle from Simulation }
\]

\section*{Optimizing the Fit}
- Sample results for 50 positrons:


\section*{Algorithm Performance}
- Mistag rate was obtained for 250 electrons (per \(|\vec{p}|\) bin):
\begin{tabular}{c|c|c|c|c|c|c}
\hline \multirow{2}{*}{\(|\vec{B}|\)} & \multicolumn{5}{|c|}{\(|\vec{p}|(\mathrm{GeV})\)} & \multirow{2}{*}{ Total } \\
\cline { 3 - 6 } & \(0.2-0.6\) & \(0.6-1.0\) & \(1.0-1.4\) & \(1.4-1.8\) & \(1.8-2.2\) & \\
\cline { 1 - 6 } 0.8 T & \(1.6 \%\) & \(0.4 \%\) & \(1.2 \%\) & \(1.6 \%\) & \(0.8 \%\) & \(1.1 \%\) \\
1.0 T & \(0 \%\) & \(0.4 \%\) & \(0 \%\) & \(0 \%\) & \(0.8 \%\) & \(0.2 \%\) \\
\hline
\end{tabular}

Algorithm needs to be precise to \(10^{-4}\) so results are not good enough, but data is not ideal

Hard Scatter Events:


\section*{Hard Scattering Events}
- Main Idea: To determine point at which hard scatter occurs and discard the remaining portion of track


\section*{Next Steps and Conclusions}

\section*{Next Steps:}
- Test the algorithm on correct points
- Re-optimize the initial fit (direction of travel)
- Optimize cutoff angle to remove hard scatter events

\section*{Conclusions:}
- Current results not good enough, but definite possibility for major improvement
- Magnetic fields smaller than 1.0 T seem possible```

