Charge Discrimination in Liquid Argon Time Projection Chamber (LArTPC)

Caroline Guimarães York University

Scott Menary, Nariman Khazai, Andrea Capra

redefine THE POSSIBLE.

General Remarks

• Main motivation: To be able to use LArTPC

• Charge discrimination needed for neutrino oscillation physics:

• LArSoft = Software designed for liquid argon experiments at Fermilab.

MicroBooNE Detector

Tyvek

Algorithm Objective

- To determine whether parent particle bent up or down
 - Look at parent particle only
 - Determine maximum displacement along *x* direction

• Solution: Rotate coordinate system along original momentum direction

Implementation

• Each point can be translated into the rotated coordinate system: $x' = -\sin\theta z + \cos\theta x$

 $z' = -\sin\theta z + \cos\theta x$ $z' = \cos\theta z + \sin\theta x$

- Must determine rotation angle, θ :
 - Perform a least-squares fit to the first few points of each track to obtain original direction

Algorithm Development

```
• Structure of resulting code:
```

```
for (i=1, i< last_point, i++) {</pre>
```

```
Xposition = x[i] - x[0];
Zposition = z[i] - z[0];
X'position = -\sin(\theta)*Zposition + \cos(\theta)*Xposition;
```

```
if( std:abs(X'position) > std::abs(Max\DeltaX) ){
Max\DeltaX = X'position;
```

Loops through all the points in each event

Obtains the X coordinate for each point after rotation

Checks for maximum displacement along X

```
if(Max\Delta X > 0){
```

```
Number_electrons = Number_electrons + 1;
} else {
Number_positrons = Number_positrons + 1;
```

Adds to electron/positron counter based on the sign of ΔX

Optimizing the Fit

- Must determine number of points to fit through, N
 More points = generally more accurate, but particle bends
- Use two parameters to determine quality of fit:
 RMS Residual:

$$RMSResidual = \frac{\sqrt{\sum_{i=1}^{N} (Xposition(i) - Xfit(i))^{2}}}{N}$$

• Angle Discrepancy:

Angle Discrepancy = Angle from Fit - Angle from Simulation

Optimizing the Fit

• Sample results for 50 positrons:

Algorithm Performance

• Mistag rate was obtained for 250 electrons (per $|\vec{p}|$ bin):

	$ \overrightarrow{B} $	$ \vec{p} $ (GeV)					Total	
		0.2 – 0.6	0.6 – 1.0	1.0 – 1.4	1.4 – 1.8	1.8 - 2.2	Totai	
	0.8 T	1.6%	0.4%	1.2%	1.6%	0.8%	1.1%	
	1.0 T	0%	0.4%	0%	0%	0.8%	0.2%	
Algorithm needs to be precise to 10 ⁻⁴ so results are not good enough, but data is not ideal				<i>urd Scatter</i> <i>Events:</i>				

z (cm)

Hard Scattering Events

• Main Idea: To determine point at which hard scatter occurs and discard the remaining portion of track

Next Steps and Conclusions

- Next Steps:
- Test the algorithm on correct points
- Re-optimize the initial fit (direction of travel)
- Optimize cutoff angle to remove hard scatter events

Conclusions:

- Current results not good enough, but definite possibility for major improvement
- Magnetic fields smaller than 1.0 T seem possible