Near detectors for ν STORM

Etam NOAH (University of Geneva)

November 22, 2013

Etam NOAH (University of Geneva)

Near detectors for ν STORM

November 22, 2013 1 / 29

Near detector physics goals

- Measurement of absolute ν flux as a function of E_ν, and relative abundance of four ν species (ν_e, ν_μ, ν_μ, ν_μ):
 - Reduce systematics on sterile neutrino searches at ν STORM.
 - ... and exploit ν STORM's unique 1% precision on ν flux for...
- 'Event-generator measurements' for the LBLν experiments:
 - Background to oscillations at LBL
 v experiments.
- Precision measurements of v cross-sections:
 - Inclusive CC and Exclusive QE, Resonance;
 - Neutral current; NC-QE;
 - *v*-e scattering.
- Precision determination of the exclusive processes such as ν QE, resonance, K⁰/Λ/D production and of the nucleon structure functions;
- Dark matter searches: weakly interacting massive particles with electronic, muonic and hadronic decay modes with unprecedented sensitivity.

Near detector requirements

- Should be capable of handling high multiplicity events;
- Magnetic detector necessary especially for $\overline{\nu}$ exposure;
- Energy resolution as good as far detector;
- Likely consist of several detectors (sub-detectors) to cover flux normalization and cross-section measurements;
- ... a near detector facility:
 - Covers physics goals;
-NearBIND, HiResM ν and $\gamma \nu$ det options are presented here.

NearBIND

A magnetized iron neutrino near detector

- NearBIND at a near detector facility (20-50 m) would be a scaled version of SuperBIND at (1500 m);
 - ► 200 T:
 - dia. 3 m, length 6 m;
 - 1.5 cm Fe plates.
- NearBIND can be placed downstream of a "cross-section" detector:
 - Contributes to reconstruction of events occurring in the "cross-section" detector:
 - Provides an independent sample of events for SuperBIND physics.

Etam NOAH (University of Geneva)

The HiResMNu concept

- Derived from NOMAD;
- ND option for LBNE:
 - ► 3.5 × 3.5 × 7.5 m Straw Tube Tracker (STT);
 - 4 π ECAL in a Dipole B-field (0.4T);
 - 4 π μ detector (RPC) in Dipole and downstream
 - Pressurized Ar target (×5 FD stat).

A $\overline{\nu}_e$ CC candidate in NOMAD

- e^{-}/e^{+} ID using TRD, ECAL;
- μ from ν_μ and e from ν_e are Tracks: determined with very high precision;
- Universality equivalence: μ - $\nu_{\mu} \leftrightarrow e$ - ν_{e} ;
- Uniquely resolve μ^- (ν_μ) from μ^+ ($\overline{\nu}_\mu$), e^- (ν_e) from e^+ ($\overline{\nu}_\mu$).

Kinematics in HiResMNu

- Pt vector:
 - Powerful constraint on $E\nu$ scale and ν vs $\overline{\nu}$ interactions;
 - NC vs CC ID;

7 / 29

Resolutions in HiResMNu

- $\blacktriangleright~\rho=0.1~{\rm g/cm^3};$
- Space point res. = 200 μ m;
- ► Time res. = 1 ns;
- CC events vertex $\Delta(X,Y,Z)$ = O(250 μ m);
- Energy in downstream ECAL
 = 6%/sqrtE
- ▶ µ angle res. (~2 GeV) = O(3 mrad)
- E_{μ} res. (~2 GeV) = ~3.5 %
- E_e res. (~2 GeV) = ~4.5 %

Expected statistics at nuSTORM

- ▶ 1e21 POT;
- Fiducial mass: 7 tons.

Identification of ν_e CC interactions

 HiResMν can distinguish e⁻ from e⁺ in STT;

 \implies recons. *e* as bending tracks not showers;

- e ID against charged hadrons from both TR and dE/dx;
 ⇒ TR π rejection of 10⁻³ for ε ~ 90%:
- Multi-dim. likelihood functions to reject non-prompt backgrounds (π⁰ in ν_e CC and NC);

$$\implies$$
 On average $\epsilon = 55\%$ and $\eta = 99\%$ at LBNE;

10 / 29

ν_{μ} -QE Analysis

- Example of a ν interaction in a high-res. ND as a calibration of FD;
- Key is 2-Track (μ , p) signature: proton reconstr. is THE critical issue.

Figure 15: A ν_{μ} -QE candidate in NOMAD

Reconstruction of CCQE interactions (LBNE spectrum)

 Protons easily identified by the large dE/dx in STT and range:

 \Longrightarrow Min. range to reconstruct p track parameters 12 cm \Rightarrow 250 MeV

 Analyze BOTH 2-track and 1-track events to constrain FSI, Fermi motion and nuclear effects:

 \Longrightarrow Min. range to reconstruct p track parameters 12 cm \Rightarrow 250 MeV

Use multi-dim likelihood functions to reject DIS and Res backgrounds:

 \Longrightarrow On av. $\epsilon=$ 52% and $\eta=$ 82% for CCQE at LBNE

For
$$\nu$$
STORM $\epsilon =$ 40% with $\eta =$ 70%

π^0 reconstruction

- Clean π⁰ and γ signatures in STT;
- ν -NC and CC $\rightarrow \pi^0 \rightarrow \gamma \gamma$;
 - ▶ 50% of the $\gamma \rightarrow e^+e^-$ will convert in the STT, away from the primary vertex
- γ ID;
 - ▶ e⁻/e⁺ ID: TR;
 - kinematic cut: mass, opening angle.
- At least one converted γ in STT;
- Another γ in the downstream and side ECAL.

 $\gamma \nu \det$

GAs ModulAr NEUtrino DETector ($\gamma \nu det$)

14 / 29

Near detector designs

 $\gamma \nu \det$

TPC and plastic scintillators embedded in gas pressure vessel

Etam NOAH (University of Geneva)

Near detectors for ν STORM

November 22, 2013

15 / 29

Vertex in argon gas...

 $\gamma \nu \det$

Software framework: T. Stainer & Y. Karadzhov

Code available at https://launchpad.net/lbno-nd

э

Simulation parameters

- Flux file (Fluka) from P.
 Velten for 10⁶ p.o.t;
- ND is 800 m from target;
- $10^5 \nu_{\mu}$ only simulated, $E_{\nu} < 10$ GeV;
- Interactions only in TPC: 2.4 x 2.4 x 3.0 m, 605 kg;
- Uniform 0.5 T dipole field across TPC.

 $\gamma \nu \det$

Particles leaving the 6 TPC faces

 $\gamma \nu det$

Basic momentum reconstruction in (only) the TPC

- Only tracks with hits (Edep) points) are recorded;
- Event criteria: non-zero p and TPC tracks with at least 3 hits.
- Calculate sagitta from truth momentum:
- $s = BL^2/(26.7*p);$
- ds = 300 microns:
- ► B = 0.5 T:
- Smear and recalculate value;
- ► Sum all momenta > reconstructed ν momentum;
- 20 cm fiducial cut:

Event rates

- LBNO: events in TPC for 1.77e20 POT;
 - 1.09e6 interactions in TPC;
 - 6.7e5 good events;
 - 3.8e4 CCQE events;
- Corresponds to 3.55e7/100T/1e21POT.
- c.f. nuSTORM 2.15e6/100T/1e21POT at 50m;
- μ per spill in TPC at 800m ($\mu/m^2/spill$):
 - 0.025 from ν interactions inside TPC;
 - 6.11 from ν interactions outside TPC;
 - 9 from target that reach TPC.

Test beam activities MICE EMR

MICE EMR commissioned at UNIGE summer 2013, installed at RAL September 2013

Etam NOAH (University of Geneva)

Near detectors for ν STORM

AIDA WP8.5.2: MIND and TASD test beam prototypes

- Magnetised Iron Neutrino Detector (MIND):
 - Muon charge identification, for wrong sign muon signature of a neutrino oscillation event: golden channel at a NF: requires correct sign background rejection of 1 in 10⁴: test beam 0.8 to 5 GeV/c;
 - Hadronic shower reconstruction for identification of charged current neutrino interactions and rejection of neutral current n.i.: test beam protons/pions 0.5 to 9 GeV/c.
- Totally Active Scintillating Detector (TASD):
 - Stopping properties of pions and muons up to 200 MeV/c (MICE EMR);
 - Electron and muon charge separation inside a magnetic field, in particular electron charge ID in electron neutrino interaction for the platinum channel at a neutrino factory: 0.5 to 5 GeV/c.
- Test beam: electrons, muons and hadrons (pions, protons), 0.5 to 5.0 GeV/c, at H8 beam line in North Area at CERN 2015.

TASD and MIND on the H8 beam line: CERN North Area

Etam NOAH (University of Geneva)

Near detectors for ν STORM

November 22, 2013 24 / 29

AIDA MIND and TASD simulations

- ► TMVA of the baby-MIND:
 - SuperBIND μ ID by range: not in baby-MIND
 - Need to rely on other PID metrics: MICE-EMR?
 - Clear differentiation between e, π, μ ;
 - Training baby-MIND on μ, π, p, e .
- TASD simulations;
 - 50 plastic scintillator detector modules;
 - Variable distance 0-2.5cm;
 - Targets can be inserted in gaps between modules.

EHN1: Extension to North Area building for neutrino detector prototypes

- WA105: Laguna LBNO proto: LAr and MIND;
- WA104: ICARUS proto: LAr;
- WA104: NESSIE proto: MIND-like and Air core magnet;

Plastic scintillator bars with SiPM readout

- Extruded scintillator slabs produced by Uniplast + connectors INR;
- Kuraray Y11 wavelength shifting fiber;
- Optical glue tests and selection;
- Photosensor comparison;
- Electronics: EASIROC tests.

27 / 29

Summary

- Near detector facility at ν STORM:
 - Likely that more than one detector will be needed to fully address physics goals;
 - The ND facility is also a test bed for neutrino detector prototyping;
- Emphasis on precision neutrino interaction measurements (1% precision on ν flux)
- Several detector options:
 - NearBIND;
 - ► HiResMν;
 - γνdet;
 - Bubble chamber with CCD readout...
- Simulation, design and prototyping work:
 - Common software framework;
 - \Longrightarrow Needed to optimize designs and compare;
 - Projects for test beam activities (AIDA, CERN-WA105).

 Sanjib Mishra, Alain Blondel, Alessandro Curioni, Yury Kudenko, Ian Taylor, Tom Stainer, Yordan Karadzhov, Ryan Bayes, Franck Cadoux... are gratefully acknowledged for contributions to the slide materials