Please read these instructions before posting any event on Fermilab Indico

Indico search will be reestablished in the next version upgrade of the software: https://getindico.io/roadmap/


   

This search is only for public events. Restricted events are not available.

 

IMPORTANT! Indico has been upgraded. Please let us know as soon as possible if you find any issues and email indico-support@fnal.gov

28-30 April 2014
Fermi National Accelerator Laboratory
US/Central timezone

Fast Neutron Measurements at the Booster Neutron Beamline for Future Coherent Elastic Neutrino-Nucleus Scattering (CENNS) Experiment at Fermilab

Speaker

Robert Cooper (Indiana University)

Description

Low energy neutrinos (E < 50 MeV) have a predicted, but unobserved, coherent elastic scattering channel on nuclei. Coherent neutrino scattering has important physics reach for supernovae, standard model tests, and nuclear physics. The CENNS collaboration will deploy a liquid argon detector in a far off-axis configuration at the Booster Neutrino Beam (BNB) in order to produce a flux of low-energy neutrinos from decay-at-rest pions. A major concern for the first measurement of CENNS is beam-correlated fluxes of neutrinos that give the same signal as coherently scattered neutrinos. To understand these fluxes, the Indiana-built SciBath detector was deployed to measure fast neutron fluxes 20 m from the BNB target in the MI-12 target building. The SciBath detector is a novel 80 liter liquid scintillator detector read out by a three dimensional grid of 768 wavelength-shifting fibers. The fiber readout allows SciBath to measure neutral particle fluxes by tracking the recoiling charged particles with uniform efficiency in all directions. In this talk, I describe the SciBath detector and summarize our measurement of the flux of 10 to 200 MeV neutrons at the BNB. I will also highlight additional neutron measurements that are planned for this Fall at the BNB with the SciBath detector with a new prototype shielding configuration.

Primary author

Robert Cooper (Indiana University)

Presentation Materials