

Comparison of Radionuclide Activity in the NuMI Decay Pipe to Results from the MARS Monte Carlo

S. Diane Reitzner Satif-12 28-04-2014

Outline

- Introduction
- NuMI beamline
- Core sample results
- MARS simulation
- Nuclide distribution results
- Activity results
- Conclusions

Introduction

- Tritium is highly mobile.
 - Transfers from one medium to another
- Important to understand tritium production in beamline shielding.
 - Develop method of tritium inventory
- Difficult to assess tritium activity in solid samples
 - Need to extract the tritium first before measuring its activity.
 - Not guaranteed to extract the tritium.
 - Tritium is difficult to contain.
- Try MC methods to predict tritium production in shielding
 - Compare MARS output to activity from other radionuclides in core samples taken from the NuMI decay pipe shield at Fermilab.

NuMI Target Hall

Face of the NuMI decay pipe shield where the core samples were extracted.

Activity in Decay Pipe Shield

10⁴ 7Be ST9.84 ²²Na 10^{3} Ш Φ $\overline{\Phi}$ Activity (pCi/g) <u>Φ</u>Φ Φ Φ Φ T TOTAL **4** 10° * * 2010 10⁻¹ ∟ 200 220 240 260 280 300 Radius (cm)

Tritium Activity
Dehumidifiers installed in target hall between 2006 and 2010

Fixed Radionuclide Activity

Maximum depth from surface: 30"

Activity in Leachate

Comparison of ²²Na Activity in solid sample to leachate

Leaching fraction for ²²Na as a function of depth

MC Analysis of Nuclide Production

- Use MARS to predict nuclide distribution in the NuMI decay pipe shield.
 - Compare to fixed nuclide distributions such as ⁷Be and ⁵⁴Mn
- Simple model of NuMI target hall and decay pipe in MARS
- Detailed horns and target
- Idealised horn magnetic field

4/28/2014

NuMI Target Hall in MARS

$$y \ y:z = 1:1.000e+01$$

MC Analysis

- Core samples extracted at large radius.
 - -1.5 m < R < 3.7 m
 - Inner radius of decay pipe shield: 1.0 m
 - Thick shielding problem.
 - Decay pipe shield has large volume.
- Use star densities with fine bins to extract spatial distributions.
- Use coarse radial bins for nuclide production.
 - Run MARS in MCNP mode
 - $E_{n,th} = 1 \text{ meV}$

Star Density per Proton in the Decay Pipe Shield

Longitudinal Distribution Comparison

Radial Distribution Comparison

Radial Distribution Fits

MARS Fit:

- $-a_1e^{-b_1r}+a_2e^{-b_2r}$
- Identify first term with rapid drop-off at small radius
- Identify second term with attenuation at large radius
- $-b_1 = 0.077 \pm 0.002, b_2 = 0.024 \pm 0.001$

Data Fit:

- Core samples not deep enough to fit the first term
- $-a_2e^{-b_2r}$
- $-b_2 = 0.0229 \pm 0.0011$

Nuclide Production Calculation

- Extract nuclide production per proton for R>1.7m
- Use DETRA to calculate activity A_{tot}.
 - Intensity based on NuMI
 POT data
 - Integrate over 375 days (300 day beam on, 75 day s beam off) to compare to 2006 results

Intensity profile input to DETRA

Nuclide Activity Comparison

Nuclide	MARS Activity (pCi/g)	DATA Activity (pCi/g)	MARS Ratio ⁷ Be/X	Data Ratio ⁷ Be/X
⁷ Be	454±91	346±52	1	1
²² Na	111±22	78.7±11.9	4.1±0.7	4.4±0.9
⁵⁴ Mn	25.1±5.0	19.7±3.0	18.1±3.4	17.6±3.7
³ H	229±46	57.9±0.9	2.0±0.4	6.0±0.9

The activity at R=2.1 m and Z=93m (from Horn 1) in the NuMI decay pipe for 300 days of beam on followed by 75 days beam off.

- Activities for ⁷Be, ²²Na, and ⁵⁴Mn agree with the activity seen in the core samples.
- Ratio of ⁷Be/²²Na, ⁷Be/⁵⁴Mn agree very well with data.
- MARS reports greater activity for tritium
 - Tritium underreported in data as a single leach cycle does not collect all of the tritium

Tritium Leaching Predictions from MARS

- Unknown value for leaching fraction L_{3H}
 - Lower bound of 0.10 from ²²Na data.
 - Upper bound of 0.88 from the assumption that all of the tritium is collected in two leachings.
- Use ratio of ⁷Be/³H in MARS to predict L_{3H}

$$-L_{^3H} = \frac{(^7Be/^3H)_{MARS}}{(^7Be/^3H)_{DATA}}$$

Predicted Leaching Fraction

Location from Horn 1	Year	Radius	⁷ Be/ ³ H from Data	Estimate L _{3H}
93 m	2006	2.1 m	6.0	0.33±0.09
683 m	2006	1.5 m	8.0	0.25±0.07
93 m	2010	2.1 m	2.9	0.41±0.11
98 m	2010	3.0 m	1.8	0.66±0.17
249 m	2010	3.0 m	2.9	0.41±0.11
693 m	2010	1.5 m	3.0	0.40±0.10

Ratio of ⁷Be/³H from MARS:

2006: 2.0 2010: 1.2

Conclusions

- Activity in samples taken from the NuMI decay pipe shielding in 2006 and 2010 demonstrate the mobility of ³H.
- Fixed nuclides like ⁷Be and ²²Na can be used to benchmark Monte Carlo codes used for radionuclide production in shielding.
 - MARS prediction of nuclide distributions match data.
 - Predicted activity of fixed nuclides agree with data.
- Comparison of tritium activity predicted by MARS to the activity seen in the samples implies that only 41% of the tritium collected in the deep samples.