Plif

Accelerator & Underground Capabilities for High Energy Physics

William A. Barletta

Director, US Particle Accelerator School Dept. of Physics, MIT & UCLA Economics Faculty, University of Ljubljana

Pliī

Accelerator Capabilities

What are long term "big questions" regarding accelerator-based HEP capabilities

- How can one build a collider at the 10 30 TeV constituent mass scale?
- What is the farthest practical energy reach of accelerator-based high-energy physics?
- How would one generate 10 MW or more of proton beam power?
- Can multi-megawatt targets survive and if so, for how long?
- Can plasma-based accelerators achieve energies & luminosities relevant to high-energy physics?
- ✤ Can accelerators be made 10x cheaper per GeV? or per MW?

These are issues for the long term future

Areas of inquiry included specific questions

University of Liubh

CONOMIC

Energy Frontier

How high a luminosity is possible for the LHC?

- ➤ How high an energy is possible in the LHC tunnel?
- Could a Higgs factory be built in the LHC tunnel?

Can ILC and CLIC designs be improved using new technologies?

*Can one design a multi-TeV μ + μ - collider?

University of Ljubljana FACULTY OF ECONOMICS

Areas of inquiry included specific questions (cont'd)

Intensity Frontier:

- What secondary beams are needed for Intensity Frontier experiments?
 - ➢ What proton beams are needed to generate these secondary beams,
 - Can these be made by existing machines?
- What accelerator capabilities at heavy flavor factories are required to realize the full range of physics opportunities?
- What are new physics opportunities using high power electron & positron beams?

Accelerator test facilities

 What is broad range of test capabilities existing or needed for developing accelerator capabilities

University of Ljubljana FACULTY OF ECONOMICS

Summary conclusions – Energy Frontier

- To maximize exploration of the Energy Frontier, full exploitation of the LHC is the highest priority of the hadron-collider program
 - With renewed interest in a ~100 TeV scale collider, we recommend participation in the CERN-led international study
- As described in its Technical Design Report (TDR), the ILC is technically ready to proceed to construction
 - An experienced cadre of U.S. accelerator physicists & engineers is capable and ready to work on ILC
- Vigorous, integrated U.S. research toward demonstrating feasibility of a muon collider is highly desirable.
 - > The current funding level is inadequate to assure timely progress.

Summary conclusions – Intensity Frontier

- Next generation Intensity Frontier experiments require beam intensities & timing structures beyond capabilities of any existing accelerator
- Fermilab's proposed, multi-stage Project X would yield a world-leading capability
 - Could serve multiple experiments over an energy range 0.25 120 GeV
- ✤ DAE&ALUS / IsoDAR- Decay At Rest short baseline, anti-neutrino experiments based high power cyclotrons
 - Strong industrial & international laboratory connections

Intensity Frontier using electron beams

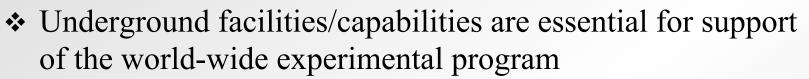
- Relevant technologies of super flavor-factories exploit strong synergy with light sources & damping rings for lepton colliders
 - Continuing U.S. involvement would maximize physics opportunities
- All electron-ion colliders studied recently would be based at an existing accelerator lab with center-of-momentum energies range from 14 GeV to 2000 GeV
 - Recirculating, energy recovery linacs (ERLs) are a key technology

Cross-cutting frontier-accelerator issues

- Understanding & controlling beam loss is a major challenge for frontier accelerators
- Superconducting RF technology Most modern high power proton facilities rely superconducting radio frequency (SRF) acceleration
 - Needs optimization for medium gradient, CW operation
- Isochronous ring cyclotrons are also good candidates for high continuous (CW) power at energy < 1 GeV
- Sustained, focused research into high-power (> 1 MW) target technology is essential to frontier accelerators
 - Conduct R&D in the context of a broad international collaboration of interested laboratories

Long range accelerator research

- Innovations in acceleration & beam transport techniques such as plasma and dielectric wakefield acceleration have significant potential to reduce the size of future facilities
- Long-term research including fundamental accelerator and beam physics theory & simulation will expand the technical options for any future accelerator-based facility
 - Personal option: this area is often underfunded in preference to project related research
- Focused engineering development is *no substitute* for innovative R&D.


Plif

Underground Detector Capabilities

On behalf of Gil Gilchriese

Relevance of underground capabilities

Iniversity of Link

ACULTY O CONOMIC

- Direct dark matter experiments
- > Neutrinoless, double-beta decay ($0 \nu \beta \beta$) experiments
- Atmospheric, reactor, solar, supernova neutrino experiments
- Proton decay
- Connections to astrophysics, nuclear and earth science, & detectors for non-proliferation
- Roughly 1,000 US scientists now participate in underground experiments
 - Includes US-led Antarctica effort)
- May grow by 30 50% over next decade

Existing/Planned Facilities

- No technical showstoppers to create underground/ice space for planned activities for next 10-20 years
- World-wide "general purpose" space is expected to about double by end of decade
 - Assumes anticipated expansion in non-US underground capabilities
- Significant non-US underground capabilities for specific neutrino experiments is planned
- Plans for expansion of underground facilities in the United States are less developed.
 - Currently, there are no approved plans with federal funding for significant expansion of underground capabilities in the U.S.

University of Ljubljana FACULTY OF ECONOMICS

Key goals for the U.S. planning process

- It is critical that US scientists continue to be supported to take advantage of future international & domestic underground facilities
- Put LBNE underground to realize its full science potential!
 - Makes it an anchor of possible future domestic underground capabilities at SURF
- Maintain leading U.S. roles in many of the future dark matter, 0ΩΩΩ & a large variety of Ω experiments.
 - Improved coordination and planning of underground facilities (overseas & domestic) is required to maintain this leading role, including the use of US infrastructure
 - > Maintaining an underground facility that can be expanded to house the largest dark matter and $0 \nu \beta \beta$ experiments would guarantee a strong US to role in world-wide program of underground physics

Thank you

Questions?