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Fixed Point and Map Muon
 Accelerator

Program

∙ Use ICOOL to find
∘ Fixed point for one period
∘ Linear map about that fixed point

∙ 4-D and 6-D
∘ 4-D at fixed energy

∙ As a function of energy
∙ RF off, no absorbers

∘ 6-D
∙ RF on, absorbers in place
∙ No stochastics

∙ Use 4-D results to do dynamic aperture scan vs.
energy
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Fixed Point and Map Muon
 Accelerator

Program

∙ Information from 4-D
∘ Energy-dependent closed orbit
∘ Dispersion
∘ Beta functions vs. energy
∘ Tunes (transverse) vs. energy
∘ Time of flight vs. energy

∙ Information from 6-D
∘ Damping (growth) rates for modes
∘ Energy of fixed point
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Math
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∙ From linear map 𝑀 , find 𝐴 such that 𝑀𝐴 = 𝐴𝑅, 𝑅
diagonal blocks like:

[
𝜆 cos 𝜇 𝜆 sin 𝜇

−𝜆 sin 𝜇 𝜆 cos 𝜇]
∙ 𝜇 phase advance, 𝜆 gives damping/growth
∙ 𝐴 normalized to 𝑎𝑇

2𝑘−1𝐽𝑎2𝑘 = 1
∘ 𝑎𝑘, 1 ⩽ 𝑘 ⩽ 6 are columns of 𝐴

∙ Dynamic aperture scan
𝑧 = √2𝐽1𝑎1 + √2𝐽2𝑎3

∙ Beta functions
𝛽𝑘 = 𝑎2

1,2𝑘−1 + 𝑎2
1,2𝑘 + 𝑎2

3,2𝑘−1 + 𝑎2
3,2𝑘
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Lattices
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∙ All operate between 𝜋 and 2𝜋 resonances for single
cell

∙ Guggenheim and rectilinear FOFO:
∘ Single sinusoidal oscillation of solenoid field in cell
∘ Solenoids tilted to give dipole field
∘ Wedge absorbers couple to dispersion
∘ Guggenheim bends, rectilinear FOFO straight

∙ Closed orbit moves in Rectilinear FOFO, uses solenoid end
fields to counter dipole

∙ Planar snake
∘ Solenoid field opposite in adjacent cells
∘ Two-cell period
∘ Planar absorbers: momentum dispersion
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Beta Functions

Muon
 Accelerator

Program

∙ Find 𝛽 vs. energy at fixed energy
∙ Also find 6-D fixed point, and beta functions
∙ Guggenheim and Rectilinear FOFO

∘ Betas for 6-D close to fixed energy
∙ Planar snake

∘ Resonance appears at 3𝜋 two-cell phase advance
∘ Betas for 6-D very different from fixed energy
∘ Appear to have coupling resonance from
212–215 MeV/c
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Betas: Rectilinear FOFO
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Betas: Planar Snake
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Energy Acceptance Muon
 Accelerator

Program

∙ Energy acceptance
∘ Drops when lattices no longer scale
∘ Worse for Rectilinear FOFO at that point
∘ Poor for planar snake
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Energy Acceptance Muon
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Planar Snake Eigensystem Muon
 Accelerator
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∙ All tunes have fractional part of 0.25
∙ Two planes strongly coupled

∘ Eigenellipses have nonzero area in horizontal and
longitudinal

∘ Areas about equal
∘ Compare dispersion

∙ Eigenellipses have projections into other plane
∙ But projected as a line, not an ellipse

∙ Thus sitting on a synchro-betatron resonance
∘ This is the source of the apparent dispersion Bob sees
∘ Makes lattice performance sensitive to design
∘ 3𝜋 resonance may not be limiting
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Guggenheim 6-D Eigenvalues Muon
 Accelerator
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∙ Look at eigenvalue magnitudes
∙ Some eigenvalues are unstable longitudinally

∘ Closed orbit on side of “house” shaped wedge
∘ Still see wedge on average, but smaller slope
∘ Less nonlinear if use slope, modest length penalty

∙ Eigenvalue split for stage 13
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Guggenheim Eigenvalue Magnitude Muon
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Lossless 𝑄 Muon
 Accelerator

Program

∙ 𝑄 definition: (𝑑𝜀6/𝜀6)/(𝑑𝑁/𝑁)
∙ Ignore performance reduction other then decays:

∘ Scattering/straggling
∙ Approach to equilibrium
∙ Particles kicked outside dynamic aperture

∘ Non-stochastic dynamic losses
∙ Only eigenvalues, energy, length matter
∙ Rectilinear FOFO significantly worse

∘ Despite high gradients
∘ Could explain worse performance
∘ Should be fixable: more energy loss
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Lossless 𝑄 Muon
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RF Gradients
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Dynamic Aperture Muon
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∙ Once lattices no longer scale, dynamic aperture
drops drops faster than proportional to beta

∙ Much stronger effect than mometum acceptance
reduction

∙ Every lattice exhibits resonance
∘ Near tune of 0.75
∘ May not have major impact

∙ Rectilinear FOFO has “softer” dynamic aperture
∙ Planar snake: dynamic aperture not approaching
zero at high energy

∙ Some of this looks decidedly non-symplectic
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Dynamic Aperture Muon
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Dynamic Aperture Muon
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Dynamic Aperture Muon
 Accelerator

Program

 160  180  200  220  240

Momentum (MeV/c)

 0

 10

 20

 30

 40

 50

 60

D
yn

am
ic

 A
pe

rt
ur

e 
(m

m
)

 0

 20

 40

 60

 80

 100

C
el

ls

Rectilinear FOFO Stage 4

8 October 2013 J. S. Berg | Analysis of Cooling Lattices | Vacuum RF (20)



Dynamic Aperture Muon
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Dynamic Aperture Muon
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Practical Results
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∙ Guggenheim might improve by using slope of
wedge, not side

∙ Rectilinear FOFO should do better by going through
more absorber

∙ Planar snake using synchro-betatron resonance
∘ Probably difficult to achieve over wide parameter range

∙ Energy acceptance of planar snake very limited
∙ Transverse dynamic aperture probably the primary
performance limitation for low 𝛽 (as lattices no
longer scaled down with 𝛽)
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Additional Analysis Muon
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∙ Can look at the RF bucket and how it relates to the
transverse passband

∙ Look at dynamic aperture in 6-D
∙ Study what gives some of the structures we see

∘ Resonance near 0.75
∘ Transverse coupling resonance in half-flip
∘ Details of synchro-betatron resonance in half-flip

∙ Understand eigenvalue split in stage 13 Guggenheim
∙ Identify if non-symplectic behavior important
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RF Gradients
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∙ Need consistent value for comparison
∙ Cavity lengths also matter
∙ Propose consistent values

∘ consistent with 17 MV/m at 201.25 MHz
Δ𝐸 Δ𝐸

Freq. Length Grad 𝑣 = 𝑐 200 MeV/c
MHz cm MV/m MeV MeV
325 30 22 5.51 5.23
650 15 31 3.88 3.68
975 10 38 3.17 3.01
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