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BRODKARIEN Fixed Point and Map

“« Use ICOOL to find

o Fixed point for one period
o Linear map about that fixed point

e 4-D and 6-D
o 4-D at fixed energy
e As a function of energy
e RF off, no absorbers
o 6-D
e RF on, absorbers 1n place
e No stochastics

e Use 4-D results to do dynamic aperture scan vs.
energy
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BROOKHFIVEN

Fixed Point and Map

e Information from 4-D
o Energy-dependent closed orbit
o Dispersion
o Beta functions vs. energy
o Tunes (transverse) vs. energy
o Time of flight vs. energy
e Information from 6-D
o Damping (growth) rates for modes
o Energy of fixed point
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"« From linear map M, find A such that M A = AR, R
diagonal blocks like:

Acosu Asmmpy

—ASIN U ACOS U

» 41 phase advance, 4 gives damping/growth

e A normalized to agk_lJ a,, =1
o a,, | <k < 6 are columns of A

e Dynamic aperture scan

z=+/2J,a,++\/2J,a,

e Beta functions
) ) ) )

bp=a/, taj,tas, +a3,,

8 October 2013 J. S. Berg | Analysis of Cooling Lattices | Vacuum RF (@)



BROOKHFIVEN

. 7N
NATIONAL LABORATORY Lattlces TC/(

e All operate between # and 2z resonances for single

cell
e Guggenheim and rectilinear FOFO:
o Single sinusoidal oscillation of solenoid field in cell
o Solenoids tilted to give dipole field

o Wedge absorbers couple to dispersion
o Guggenheim bends, rectilinear FOFO straight
e Closed orbit moves in Rectilinear FOFO, uses solenoid end
fields to counter dipole

e Planar snake
o Solenoid field opposite in adjacent cells
o Two-cell period
o Planar absorbers: momentum dispersion
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BROOKHIATEN Beta Functions

"« Find f vs. energy at fixed energy

e Also find 6-D fixed point, and beta functions
e Guggenheim and Rectilinear FOFO
o Betas for 6-D close to fixed energy
e Planar snake
o Resonance appears at 3z two-cell phase advance
o Betas for 6-D very different from fixed energy
o Appear to have coupling resonance from

212-215 MeV/c
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BROOKARVEN Energy Acceptance

e Energy acceptance
o Drops when lattices no longer scale
o Worse for Rectilinear FOFO at that point
o Poor for planar snake
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e All tunes have fractional part of 0.25
e Two planes strongly coupled
o Eigenellipses have nonzero area in horizontal and
longitudinal

o Areas about equal

o Compare dispersion
« Eigenellipses have projections into other plane
e But projected as a line, not an ellipse

e Thus sitting on a synchro-betatron resonance
o This 1s the source of the apparent dispersion Bob sees
o Makes lattice performance sensitive to design
o 37 resonance may not be limiting
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bpeantad — (GUggenheim 6-D Eigenvalues

e Look at eigenvalue magnitudes

e Some eigenvalues are unstable longitudinally
o Closed orbit on side of “house’ shaped wedge
o Still see wedge on average, but smaller slope
o Less nonlinear 1f use slope, modest length penalty

e Eigenvalue split for stage 13
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e O definition: (deg/eg)/(dN/N)
e Ignore performance reduction other then decays:
o Scattering/straggling
e Approach to equilibrium
e Particles kicked outside dynamic aperture

o Non-stochastic dynamic losses

e Only eigenvalues, energy, length matter
e Rectilinear FOFO significantly worse

o Despite high gradients

o Could explain worse performance

o Should be fixable: more energy loss
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BROGIAREN, Dynamic Aperture

"« Once lattices no longer scale, dynamic aperture
drops drops faster than proportional to beta
e Much stronger effect than mometum acceptance

reduction
e Every lattice exhibits resonance
o Near tune of 0.75

o May not have major impact
e Rectilinear FOFO has “softer” dynamic aperture
e Planar snake: dynamic aperture not approaching
zero at high energy
e Some of this looks decidedly non-symplectic
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BROGKARIEN Dynamic Aperture
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BROOKHIATEN Practical Results

. Guggenheim might improve by using slope of
wedge, not side
» Rectilinear FOFO should do better by going through

more absorber
e Planar snake using synchro-betatron resonance
o Probably difficult to achieve over wide parameter range

e Energy acceptance of planar snake very limited

e Transverse dynamic aperture probably the primary
performance limitation for low g (as lattices no
longer scaled down with f)
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"« Can look at the RF bucket and how it relates to the
transverse passband

e Look at dynamic aperture in 6-D

e Study what gives some of the structures we see
o Resonance near 0.75
o Transverse coupling resonance 1n halt-flip
o Details of synchro-betatron resonance in half-flip

e Understand eigenvalue split in stage 13 Guggenheim
e Identify 1f non-symplectic behavior important
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BROOKHEVEN RF Gradients

e Need consistent value for comparison

o Cavity lengths also matter
e Propose consistent values
o consistent with 17 MV/m at 201.25 MHz

AE AE
Freq. Length Grad v=c 200 MeV/c
MHz cm MV/m MeV MeV
325 30 22 5.51 5.23
650 15 31 3.88 3.68

975 10 38 3.17 3.01
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