

Analysis of Cooling Lattices

J. Scott Berg Brookhaven National Laboratory Vacuum RF Phone Meeting 8 October 2013

Fixed Point and Map

- Use ICOOL to find
 - Fixed point for one period
 - Linear map about that fixed point
- 4-D and 6-D
 - 4-D at fixed energy
 - As a function of energy
 - RF off, no absorbers
 - 6-D
 - RF on, absorbers in place
 - No stochastics
- Use 4-D results to do dynamic aperture scan vs. energy

Fixed Point and Map

- Information from 4-D
 - Energy-dependent closed orbit
 - Dispersion
 - Beta functions vs. energy
 - Tunes (transverse) vs. energy
 - Time of flight vs. energy
- Information from 6-D
 - Damping (growth) rates for modes
 - Energy of fixed point

Math

• From linear map M, find A such that MA = AR, R diagonal blocks like:

 $\begin{bmatrix} \lambda \cos \mu & \lambda \sin \mu \\ -\lambda \sin \mu & \lambda \cos \mu \end{bmatrix}$

- μ phase advance, λ gives damping/growth
- A normalized to $a_{2k-1}^T J a_{2k} = 1$ • $a_k, 1 \le k \le 6$ are columns of A
- Dynamic aperture scan

$$\boldsymbol{z} = \sqrt{2\boldsymbol{J}_1}\boldsymbol{a}_1 + \sqrt{2\boldsymbol{J}_2}\boldsymbol{a}_3$$

• Beta functions

Lattices

- All operate between π and 2π resonances for single cell
- Guggenheim and rectilinear FOFO:
 - Single sinusoidal oscillation of solenoid field in cell
 - Solenoids tilted to give dipole field
 - Wedge absorbers couple to dispersion
 - Guggenheim bends, rectilinear FOFO straight
 - Closed orbit moves in Rectilinear FOFO, uses solenoid end fields to counter dipole
- Planar snake
 - Solenoid field opposite in adjacent cells
 - Two-cell period
 - Planar absorbers: momentum dispersion

- Find β vs. energy at fixed energy
- Also find 6-D fixed point, and beta functions
- Guggenheim and Rectilinear FOFO
 - Betas for 6-D close to fixed energy
- Planar snake
 - Resonance appears at 3π two-cell phase advance
 - Betas for 6-D very different from fixed energy
 - Appear to have coupling resonance from 212–215 MeV/c

Betas: Rectilinear FOFO

Betas: Planar Snake

- Energy acceptance
 - Drops when lattices no longer scale
 - Worse for Rectilinear FOFO at that point
 - Poor for planar snake

Energy Acceptance

Planar Snake Eigensystem

- All tunes have fractional part of 0.25
- Two planes strongly coupled
 - Eigenellipses have nonzero area in horizontal and longitudinal
 - Areas about equal
 - Compare dispersion
 - Eigenellipses have projections into other plane
 - But projected as a line, not an ellipse
- Thus sitting on a synchro-betatron resonance
 - This is the source of the apparent dispersion Bob sees
 - Makes lattice performance sensitive to design
 - 3π resonance may not be limiting

- Look at eigenvalue magnitudes
- Some eigenvalues are unstable longitudinally
 - Closed orbit on side of "house" shaped wedge
 - Still see wedge on average, but smaller slope
 - Less nonlinear if use slope, modest length penalty
- Eigenvalue split for stage 13

ROOKHAVEN Guggenheim Eigenvalue Magnitude

- *Q* definition: $(d\varepsilon_6/\varepsilon_6)/(dN/N)$
- Ignore performance reduction other then decays:
 - Scattering/straggling
 - Approach to equilibrium
 - Particles kicked outside dynamic aperture
 - Non-stochastic dynamic losses
- Only eigenvalues, energy, length matter
- Rectilinear FOFO significantly worse
 - Despite high gradients
 - Could explain worse performance
 - Should be fixable: more energy loss

RF Gradients

RF Frequency (MHz)

- Once lattices no longer scale, dynamic aperture drops drops faster than proportional to beta
- Much stronger effect than mometum acceptance reduction
- Every lattice exhibits resonance
 - Near tune of 0.75
 - May not have major impact
- Rectilinear FOFO has "softer" dynamic aperture
- Planar snake: dynamic aperture not approaching zero at high energy
- Some of this looks decidedly non-symplectic

LABORATORY

NAL

Momentum (MeV/c)

Momentum (MeV/c)

Momentum (MeV/c)

- Guggenheim might improve by using slope of wedge, not side
- Rectilinear FOFO should do better by going through more absorber
- Planar snake using synchro-betatron resonance
 Probably difficult to achieve over wide parameter range
- Energy acceptance of planar snake very limited
- Transverse dynamic aperture probably the primary performance limitation for low β (as lattices no longer scaled down with β)

- Can look at the RF bucket and how it relates to the transverse passband
- Look at dynamic aperture in 6-D
- Study what gives some of the structures we see
 - Resonance near 0.75
 - Transverse coupling resonance in half-flip
 - Details of synchro-betatron resonance in half-flip
- Understand eigenvalue split in stage 13 Guggenheim
- Identify if non-symplectic behavior important

- Need consistent value for comparison
- Cavity lengths also matter
- Propose consistent values
 - consistent with 17 MV/m at 201.25 MHz

			ΔE	ΔE
Freq.	Length	Grad	v = c	200 MeV/c
MHz	cm	MV/m	MeV	MeV
325	30	22	5.51	5.23
650	15	31	3.88	3.68
975	10	38	3.17	3.01