

ELECTROPOLISHING & HPR PLAN FOR THE PROJECT X 162.5 MHz HWR

Speaker: Scott M. Gerbick

Physics Division, Argonne National Laboratory

Status and Production Readiness of the 162.5 MHz HWR

Cryomodule for Project X

October 15, 2013

Outline

- 1. Proposed EP and HPR Procedures
- 2. EP/HPR Fixturing Design and Fabrication Status
- 3. Cavity Handling Procedures
- 4. Summary

Low-β SC Cavity EP Tool

Design Specifications

- Ability to EP a complete, fully jacketed cavity
- Direct water cooling through cavity LHe jacket during EP
- Two electrical slip ring assemblies to allow rotation of both anode and cathodes during EP
- Integrated cathode loading/alignment system for quick cathode insertion/extraction
- Ability to continuously circulate acid during EP
- Nitrogen purge to evacuate hydrogen
- Quick load/unload time at ~1 hour

Low-β SC Cavity EP Tool

- Four cathodes which are used to flow both acid and N₂ to evacuate H₂
- Cathode loading done via plastic port flanges
- Nearly identical to the ANL 72 MHz QWR EP setup

Acid/N₂ Flow

- Low acid flow rate (~1 LPM)
- Acid flow only needed to refresh acid, not to maintain temperature
- Rotates at ~0.5 RPM

H₂O Flow

- Chilled water is circulated through the LHe space to control cavity temperature
- Offers an improvement over our ILC elliptical cell EP setup which chills the acid in order to control temperature

PXIE 162.5 MHz HWR EP

PXIE 162.5 MHz HWR EP

- All acid wetted parts are made from HDPE, UHMWPE, Teflon, Viton, and 3003 series aluminum
- Minimal new hardware required to adapt to existing setup

Cathodes/Cathode Loading

- Precision HDPE port flanges allow cathode loading and set cathode location inside cavity during EP
- 4 cathodes made from 3003 series aluminum tubing
- Surface area ratio of Anode:Cathode is ~6.5:1

Operation Data for 72 MHz QWR EP

CAVITY TEMPS (C)

CURRENT (A)

OPERATING VOLTAGE (V)

ACID DUMP TANK TEMP (C)

ACID RETURN LINE TEMP (C)

WATER RETURN TEMP (C)

Operating Parameters for 72 MHz QWR EP

Parameter	Unit	Value
Voltage	V	18
Current density	mA/cm^2	30
Average temps.	С	27
Average temps.	С	+/- 1
stability		
Amplitude of	С	3
temps. oscillations		
(due to cavity		
rotation)		
Acid flow	1/min	1
Cavity rotation	rpm	0.5
Nitrogen flow	scfm	1.5

ANL 72 MHz QWR Before and After EP

BEFORE EP

AFTER 12HRS OF EP 150µm Nb REMOVED

HPR

HPR

- Cavity and all required components and hardware will be ultrasonic cleaned prior to HPR
- Couplers, pickups, hardware, etc, will be HPR'd with handheld tool
- Cavity will be HPR'd using ANL cavity HPR tool
- Multiple passes per port are performed during cavity HPR

Fixturing/Fabrication Status

EP:

- Modeling is complete
- PO is being processed for machining of required new parts
- Plan to have parts in-hand by late November

HPR:

- Modeling is complete
- Modify existing 72 MHz QWR fixturing (drill some holes) for use with PXIE HWR
- HPR wand to get PFA coated
- PLC control in the works

Cavity Handling Procedures

EP:

- A checklist for the entire process
- Practically identical to that of the ANL 72 MHz QWR using proven tooling

Ultrasonic Cleaning:

- More checklists...
- Same recipe/procedure developed for the ILC and used on recent ANL cavities

HPR:

- Even more checklists...
- Follow the same techniques successfully used on cavities processed by ANL using the ANL HPR tool

Clean Assembly:

- Yes, more checklists
- Clean assembly will follow all procedures developed for the ANL 72 MHz QWR

Summary

- EP and HPR of FNAL 162.5 MHz HWR will be nearly identical to the ANL 72 MHz QWR in layout, operating parameters, and procedures
- Minimal new hardware required in order to EP HWR's in the ANL EP tool
- HPR of HWR's will use existing ANL tool, requiring only modification of existing mounting fixture
- All cavity handling procedures, from pre-EP to post-clean assembly will be nearly identical to those developed by ANL for the ILC cavity and ANL 72 MHz QWR cavity processing

