

D&S: Acceleration

J. Scott Berg Brookhaven National Laboratory MAP Collaboration Meeting 20 June 2013

- IDS-NF 10 GeV Neutrino Factory
 - Bunch trains at 50 Hz
 - \circ 30,000 μm normalized transverse acceptance
 - 150 mm normalized longitudinal acceptance
- 63 GeV Higgs factory
 - Single bunch at 15 Hz
 - 300 µm normalized transverse *emittance*
 - 1 mm normalized longitudinal *emittance*
- 750+ GeV muon collider
 - Single bunch at 15 Hz
 - $\circ~25~\mu m$ normalized transverse emittance
 - 72 mm normalized longitudinal emittance (huge)

- Acceleration for the IDS-NF
 - Large transverse and longitudinal emittances
 - All using 201.25 MHz SCRF
 - Linac to 0.8 GeV
 - 4.5 pass RLA to 2.8 GeV
 - 4.5 pass RLA to 10 GeV
- Muon collider acceleration: working backward
 - Maximize number of passes through RF
 - Keeping average accelerating gradient high
 - Hybrid synchrotron to highest energies
 - FFAGs when hybrid synchrotron can't ramp fast enough
 - RLAs when comparably efficient to FFAG

IDS-NF: Acceleration Layout

- Solenoid-focused linac from 0.244 to 0.775 GeV
- 25° double arc chicane transfer line
- 4.5-pass RLA from 0.775 to 2.8 GeV, FODO lattice
- 40° double arc chicane transfer line
- 4.5-pass RLA from from 2.8 GeV to 10 GeV, FODO lattice

IDS-NF: Linac

- Compact cells at start: keep beam small
- More efficient cells later

- Different signs bend up or down
- Both bend horizontally in same direction

IDS-NF: RLA Arcs

IDS-NF: RLA Arcs

- Arcs vertically separate at crossing
- Vertical dispersion corrected
- Horizontal dispersion flips when curvature direction changes

IDS-NF: RLA Linac

- Injection at linac center
- Quad gradients ramps to keep beta functions flat for first half pass
- Quad gradients reflection symmetric about linac center
- Linac modules in RLA I similar to last part of initial linac, but quad focused
- Linac modules in RLA II have two cavities, smaller aperture, to get better average gradient

- FFAG dropped from the scenario when energy dropped from 25 GeV to 10 GeV
- Lattices recently completed, but have been mostly stable for a few months
- Engineering effort on full design from UK
 - Lots of thinking about layout and civil
 - Work on cryotstat designs
- Major questions to be addressed in engineering
 - Is it possible to lay out the linac as compactly as designed?
 - Will everything fit into the switchyard?

- Large beam emittance requires magnets near spreader dipole
 - Possibly easier for collider beam parameters
- Current design has magnet/beamline conflicts
 - Can hopefully be addressed with design modifications, but
 - Will not have time to close loop for IDS-NF
- Importance of doing a good engineering layout with RLA designs

IDS-NF RLA Switchyard Layout

Preliminiary, showing some ideas [N. Collomb]

NATIONAL LABORATORY

- Linac: compact cells at start
 - Needed for large longitudinal emittance
 - Could always switch to expensive acceleration (cooling channel, etc.)
- RLAs: turn limitations
 - What limits the number of RLA passes
 - Switchyard engineering drawings provide important input
 - Can we push to more turns?
 - Important to understand for collider designs

- Large longitudinal and transverse emittance
- Needs 6-D tracking through full system, avoiding approximations
- First attempt done earlier in IDS-NF
 - Not particularly successful
 - Importance of re-turning lattice in tracking code to match tuning parameters of design
- Primary concerns
 - Nonlinear longitudinal-transverse coupling due to lack of chromaticity correction
 - Losses due to longitudinal tail clipping (or effective longitudinal emittance growth)
 - Can propagate to transverse

- Neutrino factory acceleration to 5 GeV designed
 Linac plus one RLA, 325 MHz
- Idea for combining two RLA arcs into a single arc
- FFAG for 25 GeV neutrino factory
 - Design had significant engineering work and feedback
 - Problems with transmission, but cause and solution known
 - Dropped due to reduction in final energy to 10 GeV

- Goal: baseline designs at end FY 2014
- Challenged by limited manpower
- Keep costs down and efficiencies high by maximizing passes through RF
 - Hybrid synchrotrons at highest energies
 - Limited at low energy due to magent ramp rate
 - Not in Higgs factory
 - FFAGs at intermediate energies
 - RLAs when efficiency no longer favors FFAGs
 - Linac from lowest energy

- Hybrid synchrotron design
 - Garren design gives proof of principle and first cut at scale and parameters
 - Still needs
 - Chromaticity correction
 - Time of flight correction
 - Will require significant horizontal aperture increase
 - Interaction with chromatic correction
 - Challenges to efficiency
 - Large longitudinal emittance
 - Very high energies: fitting onto site
 - Importance of high fields in ramped magnets

Muon Collider Plans

Muon Collider Plans

- Shared proton-muon linac with muon RLA falling outside this scenario [Lebedev]
 - First pass at design/tracking exists

- FY13 plans
 - FFAG design work for FFAG to choose breakpoint between RLA and FFAG for Higgs
 - IDS-NF linac and RLA designs
- FY14 plans
 - Linac, RLA, and FFAG parameters for Higgs factory
 - Linac, RLA, FFAG, and hybrid synchrotron parameters for muon collider
- FY15: back to physics
 - Tracking studies in Linac-RLA chain
 - Switchyard and turn limitation studies for RLAs
 - Tracking studies and design optimizations for FFAGs
 - Hybrid synchrotron lattice design