

Muon Accelerator Program: Overview & Directions

Mark Palmer June 19, 2013

Outline

- Introduction
- Organizational Thrusts
- R&D Effort
- Snowmass Process
- Concluding Remarks

INTRODUCTION

3 MAP 2013 Collaboration Meeting - Fermilab

June 19, 2013 **莽 Fermilab**

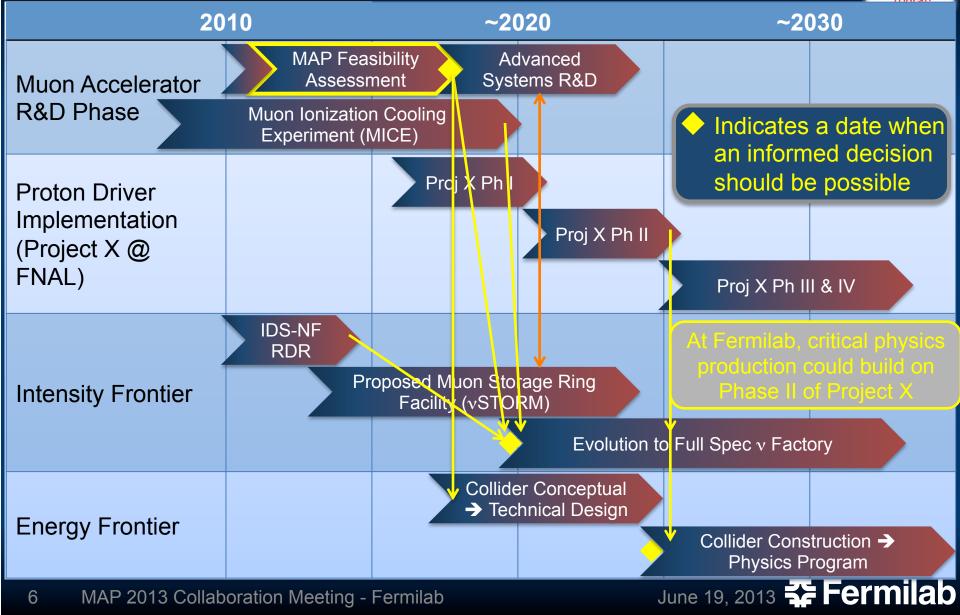
Welcome

- Today is a joint MAP and MICE day
 - Welcome to all!
 - I hope that today provides an opportunity for both groups to mingle and enhance connections
- I would like to say thanks in advance to Alan Bross and Pavel Snopok who handled the local organization along with:
 - The Fermilab Conference Office
 - Cynthia Sazama
 - Suzanne Weber

June 19, 2013 🛟 Fermilab

MAP's Near Term Picture

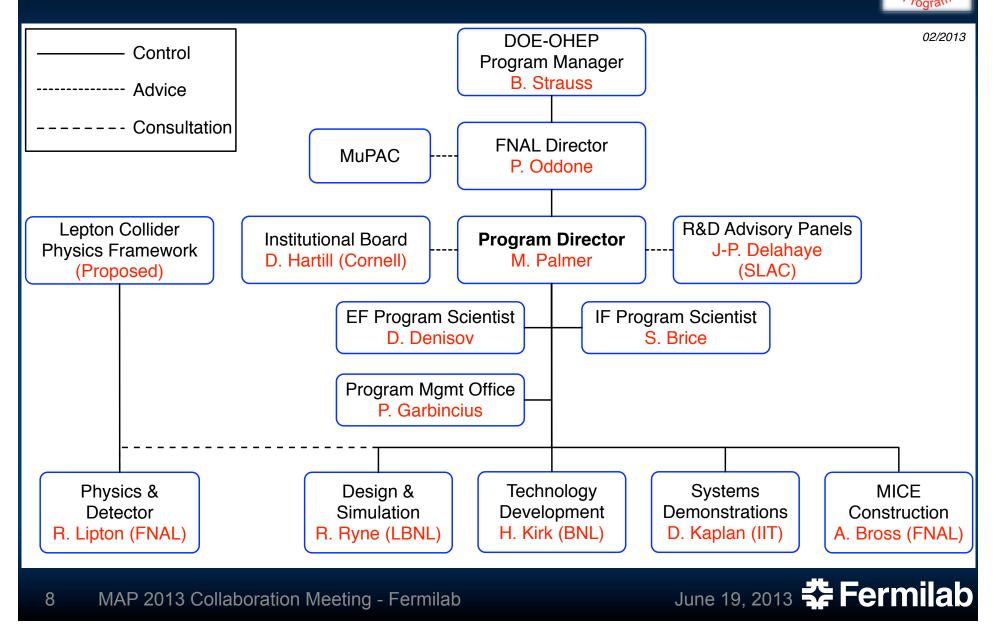
Significant program reorganization over the last year:

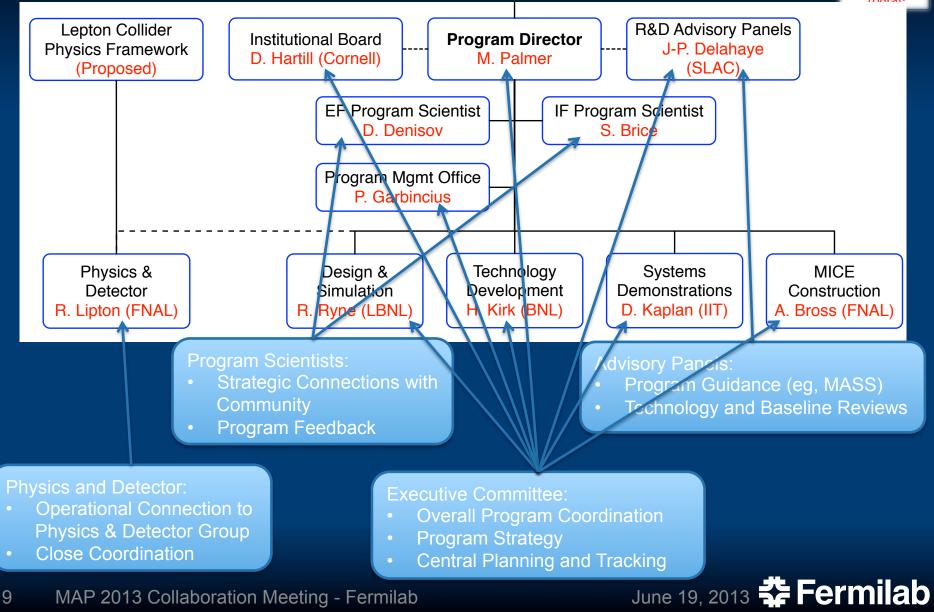

- Project-like reorganization of the program
 - Updated Program Management Plan
 - Implementation of project planning/tracking tools
 - Development of a more detailed Program Execution Plan
 - Detailed assessment of likely costs and schedules
- Major Requirements of the Feasibility Assessment
 - Initial Baseline Selection Process
 - Technology Demonstrations
 - MICE Construction Sub-Project ⇒ Successful Experimental Effort
 - Long-term planning
 - MASS
 - 6DICE

Some things have gone smoothly. And some less so...

June 19, 2013 🛟 Fermilab

The Muon Accelerator Program Timeline




ORGANIZATIONAL THRUSTS

MAP Top Level Organization

Updated Management Plan

New Elements in the Program

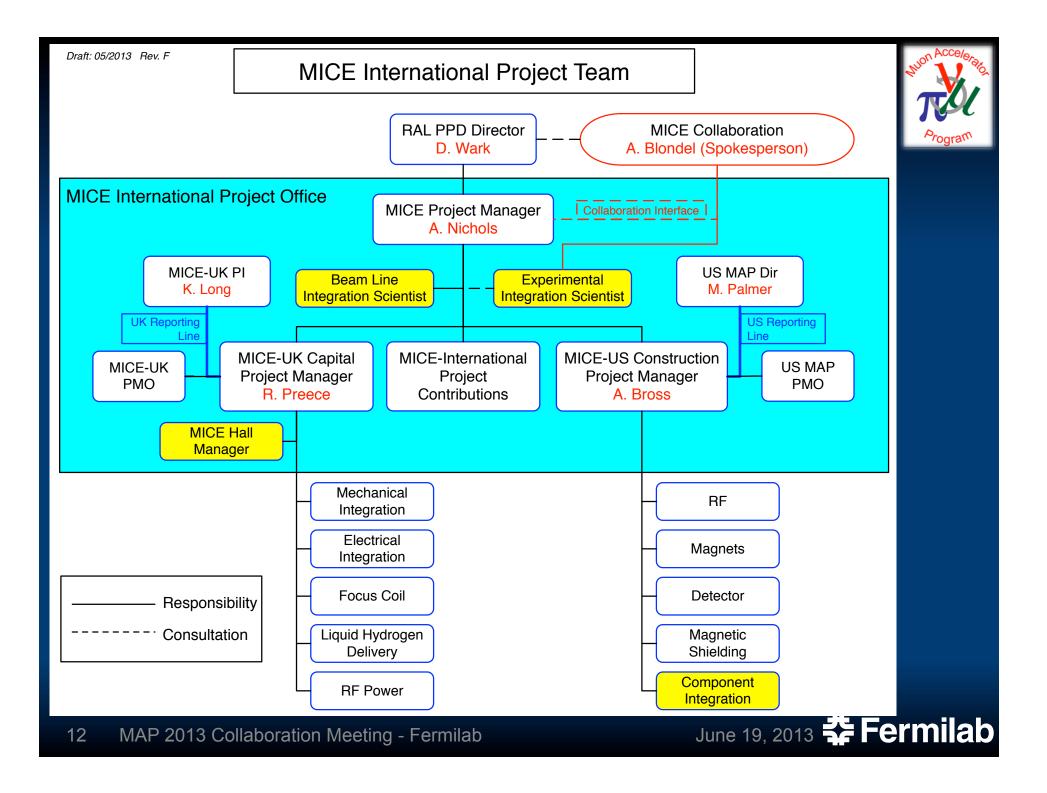
Fermilab has appointed Program Scientists to support MAP

- Steve Brice will help coordinate the strategic connections of MAP to the Intensity Frontier physics effort
- Dmitri Denisov will help coordinate the strategic connections of MAP to the Energy Frontier physics effort
- They have an important role to play as we move through the Snowmass and P5 process...

MAP R&D Advisory Panels

- Jean-Pierre Delahaye
- First instance is MASS, which is working towards a staging plan and is coordinating our Snowmass White Paper

MAP Program Management Office

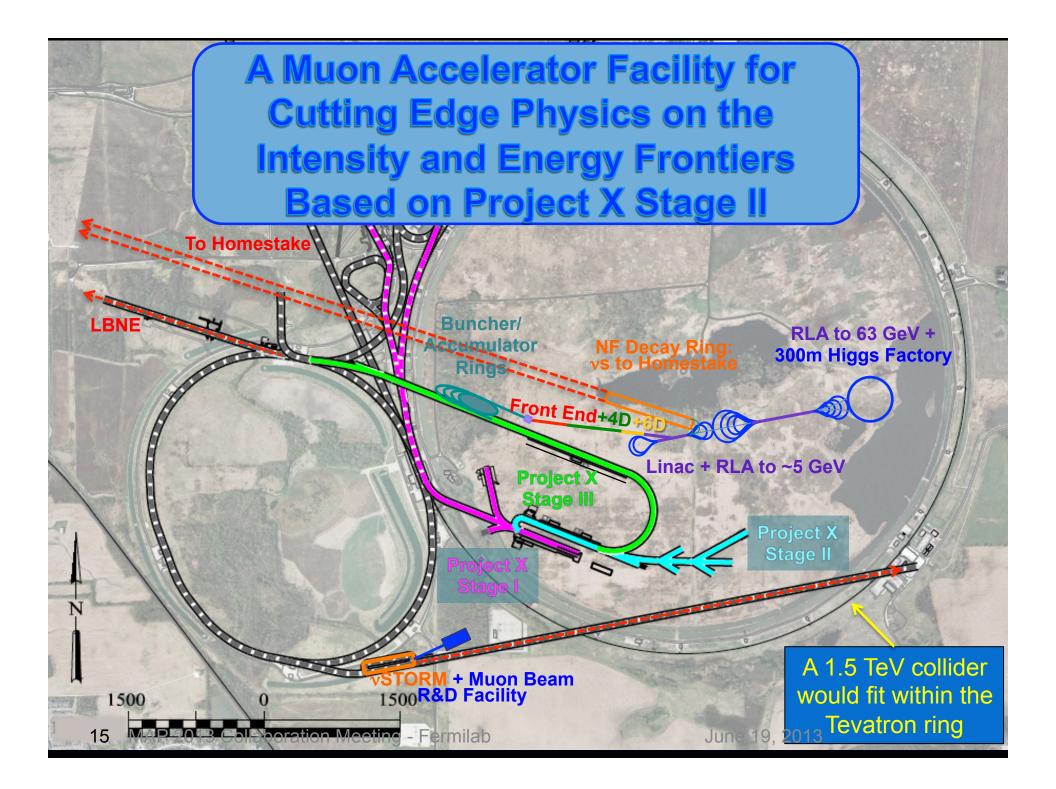

- Peter Garbincius
- Program planning, budget and interfaces between institutions

MAP L1 & L2 Organization Technology MICE Physics & **Systems** Design & Detector Simulation Development **Demonstrations** Construction R. Lipton (FNAL) R. Ryne (LBNL) H. Kirk (BNL) D. Kaplan (IIT) A. Bross (FNAL) MICE Magnet Normal **Collider Physics** Proton Driver Conducting RF (Experiment) Fabrication E. Eichten K. Gollwitzer L. Coney D. Li S. Gourlav **RF** Fabrication D. Li Collider Superconducting 6D Cooling Front End Detector Demonstration Detector RF D. Stratakis A. Bross R. Lipton D. Hartill P. Snopok Magnetic Shieldina **US** Component H. Witte Cooling Magnets Integration T. Roberts J. Tompkins Machine-Detector TBD Interface Targets & N. Mokhov Acceleration Absorbers Control J.S. Berg K. McDonald NF Decay Ring Advice A. Bogacz Collider MuCool Test Area Consultation Y. Alexahin Y. Torun 02/2013

MAP 2013 Collaboration Meeting - Fermilab 11

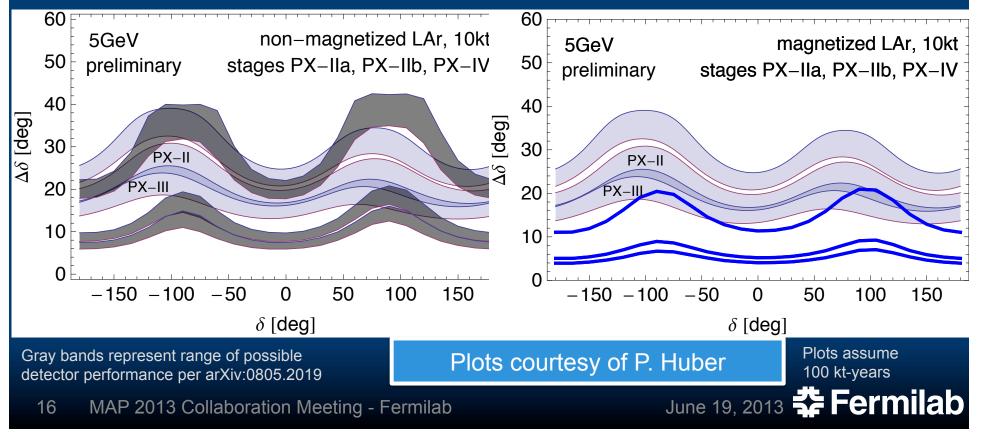
June 19, 2013 **Fermilab**

R&D EFFORT


13 MAP 2013 Collaboration Meeting - Fermilab

Some Highlights of the R&D Effort

	· /ograv.
Design & Simulation	 High Performance Computing Initiative Setting up the Initial Baseline Selection Process New NF & MC Design Options and MC Backgrounds
Technology Development	 Expanded support for the MTA Modular 805 MHz Cavity Effort HTS Conductor & Magnet Development
Systems Demonstrations	 Contributions to the MICE Online, DAQ, and Analysis Efforts 6DICE Options Study
MICE Construction	 Magnet Progress Preparing for RF Cavity Tests in the MTA Partial Yoke Magnetic Shielding for the Cooling Channel
MASS	 A Fermilab Staging Plan Possibility of Launching a Facility on Project X Stage II (2020's) Truly a 2 Frontier Plan
14 MAP 2013 Collaboration Meeting	- Fermilab June 19, 2013 Fermilab


How Could the Staged NF to Homestake Perform?

What if we send beam to LBNE?

- 1 MW, no muon cooling
- S MW, w/cooling
- A MW, w/cooling

What if we were able to have a magnetized LAr detector?

Neutrino Factory Staging (MASS)

UO Based 2 Preliminary Staging Plan Phase Project

			0				
System	Parameters	Unit	NuSTORM	L3NF	NF	IDS-NF	
Perform ance	stored μ+ or μ-/year	(8×10 ¹⁷	2×10 ²⁰	1.2×10 ²¹	1×10 ²¹	
Perf anc	v_e or v_{μ}^{*} to detectors/yr		3×10 ¹⁷	8×10 ¹⁹	5×10 ²⁰	5×10 ²⁰	
	Far Detector	Туре	Super-Bind*	Mag LAr	Mag LAr	Super-Bind	
	Distance from ring	km	1.5	1300	1300	2000	
	Mass	kT	1.3	10	30?	100	
ctor	magnetic field	т	2	0.5	0.5	1>2 ?	
Detector	Near Detector	Туре	Liquid Ar	Liquid Ar	Liquid Ar	Liquid Ar	
	Distance from ring	m	50	100	100	100	
	Mass	kТ	0.1	1	2.7	2.7	
	magnetic field	Т	No	No	Νο	No	
Neutrino Ring	Ring Momentum P_{μ}	GeV/c	3.8	5	5	10	
	Circumference C	m	350	600	600	1190	
	Straight section Length	m	150	235	235	470	
Ne	Arc Length	m	25	65	65	125	
	Initial Momentum	GeV/c	3.8	0.22	0.22	0.22	
on	single pass Linac	GeV	None	0.9?	0.9?	0.9	
rati	4.5-pass RLA	GeV	None	0.92?	0.92?	4	
Acceleration	NS-FFAG Ring	GeV	None	None	None	10	
	SRF frequency linac/RLA	MHz	None	325/650	325/650	201	
	Number of cavities		None 50	50 + 26? 550?	50 + 26? 550?	50 + 26 + 25 550 +200	
	Total Arc Length	m	50				
Cooling			No	No	4D	4D	
Protor	Proton Beam Power	MW	0.2	1	3	4	
	Proton Beam Energy	GeV	60	3	3	10	
	protons/year	1×10 ²¹	0.2	41	125	25	
	Repetition Frequency	Hz	1.25	70	70	50	

supports multiple detector technologies

June 19, 2013 🗲 Fermilab

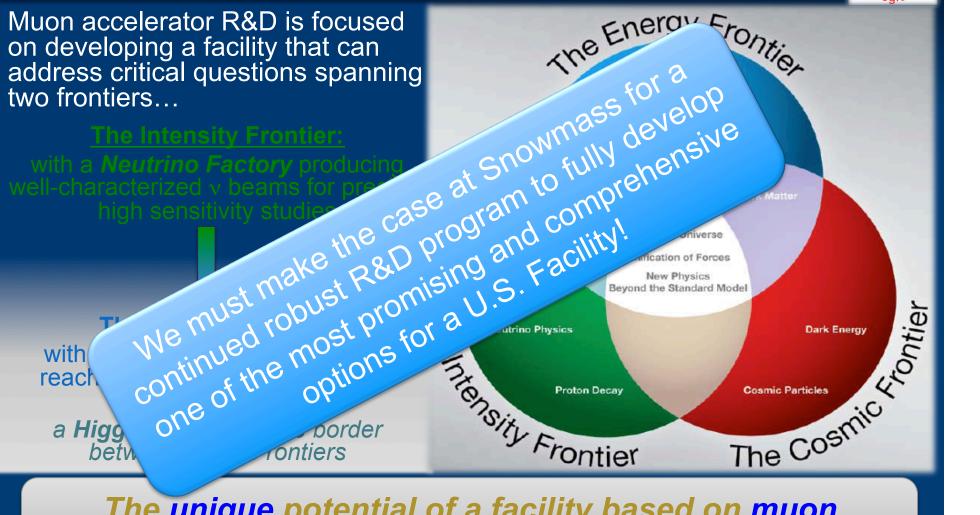
Non Provide Pr	Factory and	MAP Designs for a Muon-Based Higgs Factory and Energy Frontier Collider								
7	Muor	Muon Collider Baseline Parameters <u>Higgs Factory</u> <u>Multi-TeV Baselines</u>								
UP THE UP AND			<u>niggs r</u>	Upgraded	<u>iviuiti-iev</u>	<u>Dasennes</u>				
Compressor H- Ring Project X			Initial	Cooling /						
P Target Moon "	^{b Site} Parameter	Units	Cooling	Combiner						
F F	CoM Energy	TeV	0.126	0.126	1.5	3.0				
	Avg. Luminosity	10 ³⁴ cm ⁻² s ⁻¹	0.0017	0.008	1.25	4.4				
	Beam Energy Spread	% <	0.003	0.004	0.1	0.1				
	Circumference	km	0.3	0.3	2.5	4.5				
	No. of IPs		1	1	2	2				
Exquisite Energy	Repetition Rate	Hz	30	15	15	12				
Resolution Allows Direct	β*	cm	3.3	1.7	1 (0.5-2)	0.5 (0.3-3)				
	No. muons/bunch	10 ¹²	2	4	2	2				
Measurement	No. bunches/beam		1	1	1	1				
of Higgs Width	Norm. Trans. Emittance, ϵ_{TN}	π mm-rad	0.4	0.2	0.025	0.025				
	Norm. Long. Emittance, $\epsilon_{\scriptscriptstyle LN}$	π mm-rad	1	1.5	70	70				
Site Radiation mitigation with depth and lattice design: $\leq 10 \text{ TeV}$	Bunch Length, σ_{s}	cm	5.6	6.3	1	0.5				
	Beam Size @ IP	μm	150	75	6	3				
	Beam-beam Parameter / IP		0.005	0.02	0.09	0.09				
	Proton Driver Power	MW	4 [♯]	4	4	4				
	[#] Could begin operation with Project X Phase 2 beam									

June 19, 2013 🗲 Fermilab

SNOWMASS

19 MAP 2013 Collaboration Meeting - Fermilab

White Papers


- Two Primary White Papers are Being Prepared
 - MAP Accelerator Capabilities
 - Produced by MASS
 - J-P. Delahaye lead editor
 - Higgs Factory
 - Report based on UCLA Muon Collider Higgs Factory Workshop
 - D. Cline and G. Hanson leading the effort
- Inputs for
 - Intensity Frontier Reports
 - Project X Reports
 - Energy Frontier Reports
 - Capabilities Frontier Reports

The Aims of the Muon Accelerator Program

The unique potential of a facility based on muon accelerators is physics reach that <u>SPANS 2 FRONTIERS</u>

June 10, 2013 🚰 Fermilab

CONCLUSION

22 MAP 2013 Collaboration Meeting - Fermilab

June 19, 2013 🛟 Fermilab

Concluding Remarks

- The last year has seen many developments
 - Significant progress on the technology and design efforts
 - Program re-organization
 - Clear guidance on our budget profile
 - Clarification of the program goals
- However, there is a great deal of work remaining...
 - The Initial Baseline Selection
 - Integrating the Staging Plan with our D&S Effort
 - Increasing our rate of progress on technology demonstrations
 - Clearing major R&D risks from the MICE Construction Effort

• The potential of a Muon Accelerator Facility is tremendous

- It is our responsibility to ensure that a clear assessment of the required technologies is completed in timely fashion
- I'm looking forward to completing that process with everyone here

