

Using Beta range to determine thickness of MICE production AI windows

Neetish Pradhan*, Lucien Cremaldi, Don Summers, Tianhuan Luo, Terry Hart, David Sanders University of Mississippi

Abstact

 Low energy betas range out in modest thicknesses of AI. We can use the fact to measure the nominal thickness of the LH2 & safety windows being produced for the MICE experiment.

•These thin 180 μ m windows are used in the MICE hydrogen absorbers.

•This nondestructive measurement is used for QA before shipping windows to Berkeley for final QC.

MICE Ionization Cooling Channel w RF (grey) LH2 absorbers (blue)

We can approximate the rate of betas attenuated in a thin absorber of thickness x with an exponential absorption formula

 $I = Io exp(-\mu x)$

The windows are 6061 AI and have a central thickness of approximately 180 μ m increasing to 360 μ m near the window edge. We choose a beta source Cs-137 with a half-thickness in AI of about 150 μ m. (half attenuated.)

A simple geiger tube counted the rate. Due to electron scattering the result can be sensitive to apparatus geometry and a careful calibration needs to be performed.

A Calibration was performed with Al absorbers to determine the attenuation coefficients $\mu 1, \mu 2$. We used a dbl-exp fit.

 $I = I_o \exp(-\mu_1 x) + I_1 \exp(-\mu_2 x)$

Table 1: Calibration Data with standard absorber data for Cs-137 and TI-204

		Cs-137	TI-204
Absorber	Thickness (cm)	#/min #	/min
0	0.00000	2762	313
1	0.00059	2648	288
2	0.00093	2600	285
3	0.00122	2548	277
4	0.00200	2414	253
5	0.00241	2308	241
6	0.00393	2134	221
7	0.00467	2052	210
8	0.00796	1770	175
9 07	0.00893	1658	162
10	0.01270	1373	135
11	0.02200	991	77
12	0.02615	852	57
13	0.03819	494	29

A 180µm window and 220µm standard foil are mounted between the source below and GM tube. Counts are recorded and compared to the calibration curve for thickness determination. Cs-137 and TI-204 were used.

x = 174.2 + 4.3	μm
x = 180.8 + 3.2	μm
x = 218.9 + 2.5	μm

window w Cs-137 window w Tl-204 220 μm standard foil w Cs-137

Measurements taken with the thickness gauge. Window 4 was machined to $200\mu m$ thickness and measured $203\mu m$.

Overall precision seems to be about 5μ m when care is taken and N >10000 counts (1% statistical error).

