

Instrumentation for Measurement of 400 MeV Proton Beam Intensity and Transmission Through Collimator of HPRF Cavity Experiment at Fermilab MuCool Test Area

M. R. Jana¹, M. Chung¹, B. Freemire², P. Hanlet², M. Leonova¹, A. Moretti¹, T. Schwarz¹, A. Tollestrup¹, Y. Torun² and K. Yonehara¹

¹Fermi National Accelerator Laboratory, Batavia, Illinois – 60510, USA

²Illinois Institute of Technology, Chicago, Illinois – 60616, USA

Objective

- Muon Acceleration R&D (Ionization cooling): HPRF cavity (950 psi hydrogen gas)
- •1200 e⁻/cm are generated by incident p @ E = 400 MeV [Ionization process: $p + H_2 \rightarrow p + H_2^+ + e^-$]
- No. of protons entering HPRF cavity need to be known
- MTA is hydrogen gas flammable area
- Current Transformer (Toroid) does not work in B= 3 T
- We need passive diagnostic system for beam position, profile and beam transmission measurement
- Chromox-6 screen and CCD camera is one of the option

1: Beam pipe, 2: Linac Toroid (LT), 3: Multi-wire detector 4: Ti window, 5: Chromox-6, 6: 1st collimator, 7: US toroid, 8: 2nd collimator, 9: DS toroid, 10: HPRF cavity, 11: Beam absorber, 12: CCD camera, 13: CCD image on PC.

Value

400 MeV

H-/H-

10 μs

1600

 1.5×10^{12}

 9.3×10^{8}

240 nC

32 - 50 mA

5 ns (200 MHz)

macro-bunch/min

1.0 0.8 0.6 0.4 0.2 0.0 -0.00002 0 0.00002 0.00004 0.00006 RF Signal [1-2] Time [s]

(1)Beam on and RF power lost (2) Equilibrium condition [electron production rate = recombination rate], (3) Beam off and RF power is recovered, (4) RF pulse length: 80 μ s; RF Frequency = 802 MHz; Gas pressure = 950 psi; E_0 =20 MV/m, Beam intensity = 2×10^8 /bunch

MuCool Test Area (MTA)

1: Beam pipe, 2: multi-wire detector, 3: Titanium window, 4: Chromox-6 scintillation screen, 5: First beam collimator, 6: Superconducting solenoid magnet.

Chromox-6 Scintillation Screen

•Specialized Alumina (Al₂O₃ 99.4%) doped with Cr₂O₃ (0.5%)

- Color: Pink, Bulk Density: 3.85 g/cc,
- •Grain size: $10 15 \mu m$
- λ for luminescent when impacted by electron or H⁺ : 691-694 nm
- Melting point: 2000 °C
- Max. operating Temp: 1600 °C
- Resistivity @ 400 °C: $10^{12} \Omega$ -cm
- UHV compatibility
- Decay time: ~ 100 ms
- Attenuation co-efficient at 700 nm, $\alpha = 0.8 \pm 0.1 \text{ mm}^{-1}$

Results [4]

MTA Beam Parameters

Average beam Current

Macro bunch length

Micro bunch spacing

No. of Micro Bunch

Average charge

Repetition rate

Particle per Macro Bunch

Particle per Micro Bunch

Emittance, $\varepsilon_{95\%}$ (Simulated) | 10 mm-mrad

Energy

Species

 $(8\mu s/5ns)$

Conclusions

- Combination of Chromox-6 scintillation screen (kept in air) and CCD camera works fine in B=3 T
- Transmission efficiency for high intensity proton beam Toroid measurement results: 21±1.4% (in B=0 T) CCD Image estimation: 17.3±0.8% (in B=0 T) CCD Image estimation: 17.6±0.6% 9in B=3 T)
- For low intensity and B=0 T

Toroid measured max. Trans. efficiency: 4.13±0.3%

and min. Trans. efficiency: $1.05\pm0.08\%$ CCD Image estimated max. Trans. efficiency: $3.2\pm0.71\%$

- and min. Trans. efficiency: $1.07\pm0.06\%$ For low intensity and B=3 T, CCD image estimated Trans. efficiency is $4.19\pm0.12\%$
- CCD results are reasonable agreement with simulation

References

- 1. K. Yonehara, MAP Friday meeting, 9/23/11
- 2. M. Chung et al IPAC, Japan (2003) 3494
- 3. R. Jung et al, DIPAC 2003, Mainz, Germany
- 4. M. R. Jana et al, Rev. Scientific Instrum. 84 (2013) 063301