Upgrade of the rectilinear 6D cooling channel

V. Balbekov, Fermilab 6D vacuum RF workshop 11/5-6/2013

V. Balbekov, 11/05/13

p. 1/15

Motivation

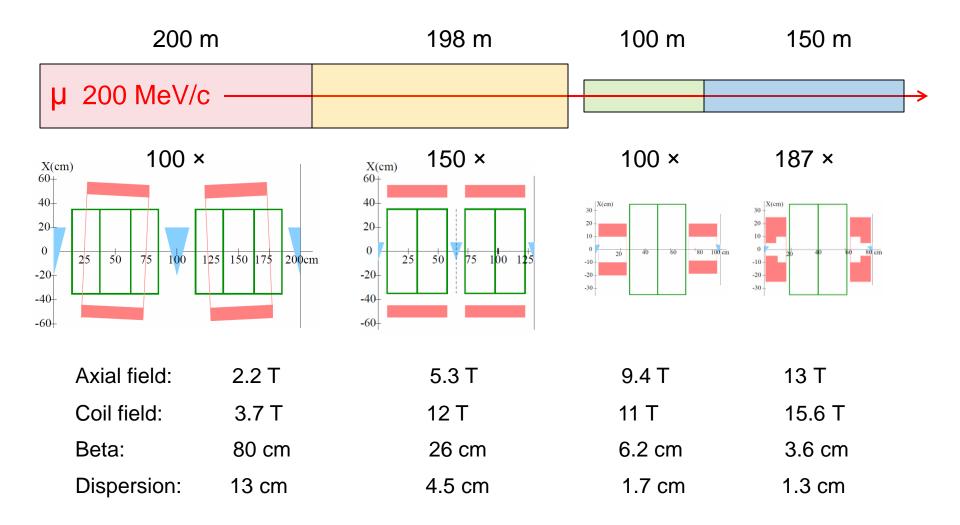
Last version of the rectilinear channel:

4-stages cooling channel of length 450 m with RF 325 MHz / 25 MV/m, LH_2 absorbers in 1-2 stages and LiH absorbers in 3-4 stages.

Cooling: $\mathcal{E}_{trans} = 20 \text{ mm} \rightarrow 0.31 \text{ mm}$ $\mathcal{E}_{long} = 20 \text{ mm} \rightarrow 1.5 \text{ mm}$

Transmission – 90% without decay, 62% with decay

Required magnetic field is accessible for NbTi - NbSn technology.


Drawbacks:

High accelerating gradient 25 MV/m. Recommended $17\sqrt{F/201.25} \approx 21.6$ MV/m Bad adjustment: overlapping of some parts (noticed by Diktys)

Updated version:

4-stages cooling channel of length 650 m with the same cells and accelerating gradient 21.6 MV/m provides about the same cooling with a bit less transmission.

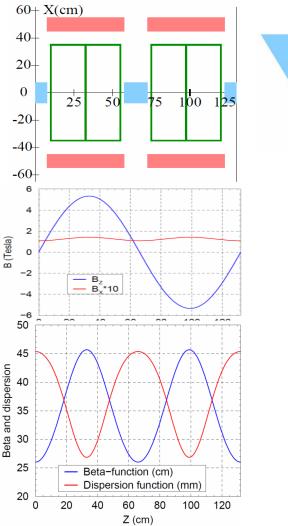
Outline of the channel

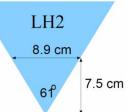
V. Balbekov, 11/05/13

p. 3/15

1st stage parameters

Ref. momentum 200 MeV/c, RF 325 MHz / 21.6 MV/m

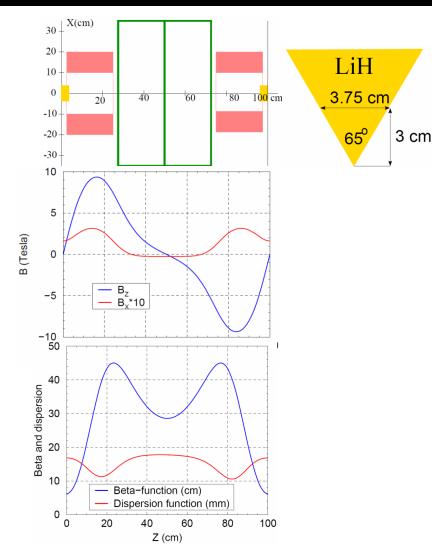

30 cm



Stage length	150 m
Number of cells	187
Cell length	200 cm
Coil length	50 cm
Coil inner radius	45 cm
Coil thickness	10 cm
Coil tilt	60 mrad
Current density	48.3 A/mm ²
The coil maximal field	3.73 T
Cavity length	24 cm
Gaps	~1cm
Synchronous phase	17.5 ⁰
LH ₂ absorber center thickness	13.3 cm
Absorber opening angle	25 ⁰

2nd stage parameters

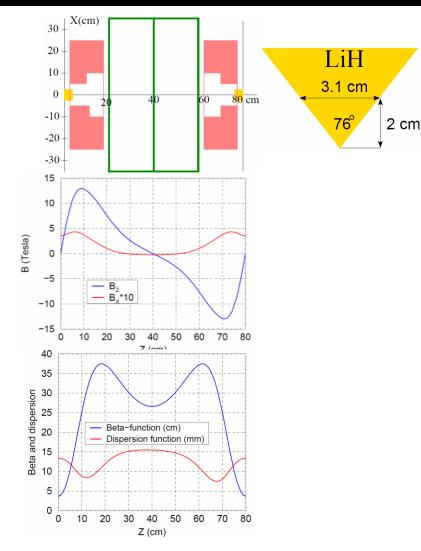
Ref. momentum 200 MeV/c, RF 325 MHz / 21.6 MV/m



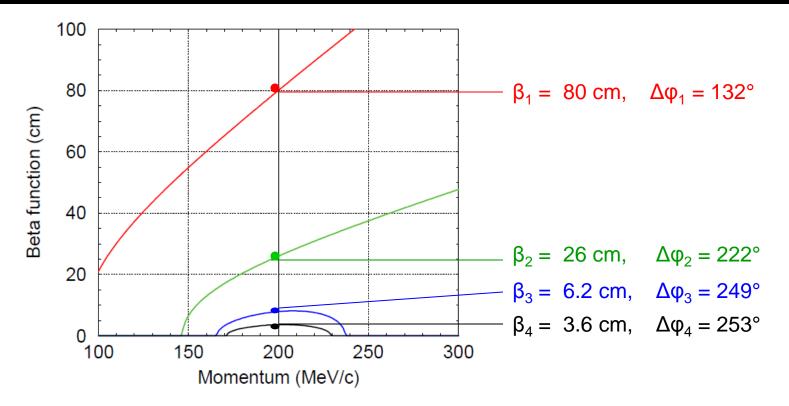
Stage length	198 m
Number of cells	150
Cell length	132 cm
Coil length	50 cm
Coil inner radius	45 cm
Coil thickness	10 cm
Coil tilt	15 mrad
Current density	175 A/mm ²
The coil maximal field	12.3 T
Cavity length	24 cm
Synchronous phase	17.5 ⁰
LH ₂ absorber center thickness	8.9 cm
Absorber opening angle	61 ⁰

V. Balbekov, 11/05/13

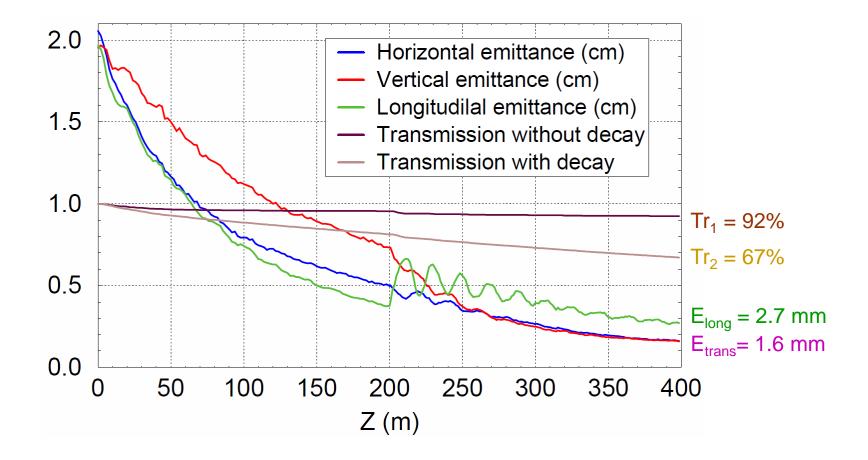
3rd stage parameters


Ref. momentum 200 MeV/c, RF 325 MHz / 21.6 MV/m

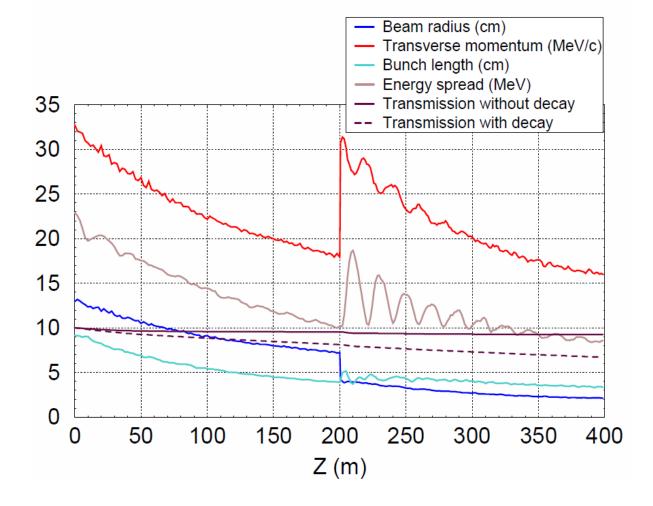
Stage length	100 m
Number of cells	100
Cell length	100 cm
Coil length	24 cm
Coil inner radius	10 cm
Coil thickness	10 cm
Coil tilt	30 mrad
Current density	139 A/mm ²
The coil maximal field	11 T
Cavity length	24 cm
Synchronous phase	45 ⁰
LH ₂ absorber center thickness	3.75 cm
Absorber opening angle	64 ⁰


4th stage parameters

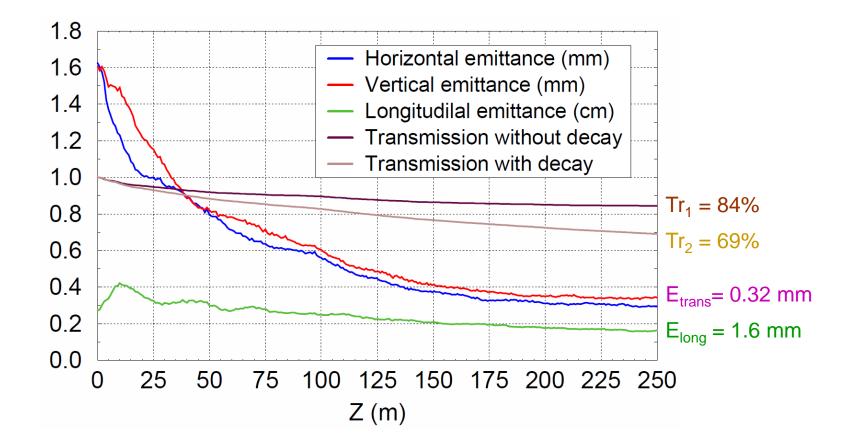
Ref. momentum 200 MeV/c, RF 325 MHz / 21.6 MV/m

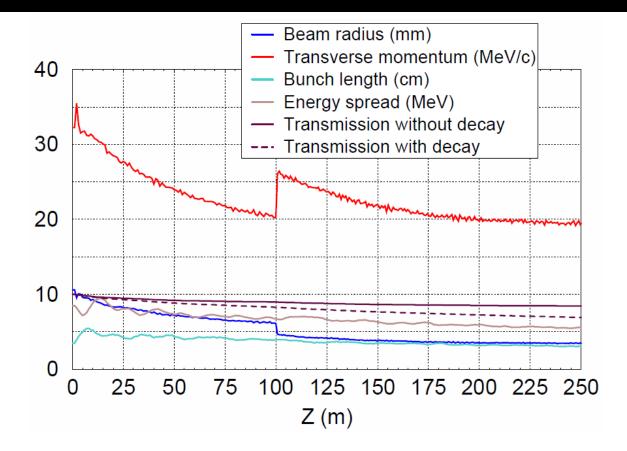

Stage length	100 m		
Number of cells	187		
Cell length	80 cm		
Coil length	16 cm		
Coil inner radius	10&5 cm		
Coil thickness	15&20 cm		
Coil tilt	20 mrad		
Current density	185 A/mm ²		
The coil maximal field	15.6 T		
Cavity length	20 cm		
Synchronous phase	45 ⁰		
LH ₂ absorber center thickness	3.12 cm		
Absorber opening angle	76 ⁰		

Beta-function against particle momentum

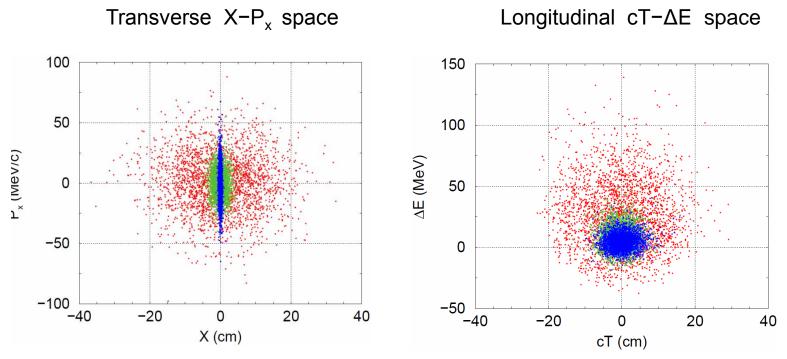


- Cells of 1st and 2nd stages have symmetrically arranged coils. They provide large momentum acceptance but should have coils of big radius for cavities.
- Coils of 3rd and 4th stages have small radius and asymmetrical arrangement providing ultimately small beta-function and a lot of room for cavities between the coils. However, its momentum acceptance is rather small being bounded by strong π and 2π resonances.


Cooling by 1st and 2nd stages: emittance and transmission (self-consistent initial distribution, 0.76 m matching section)

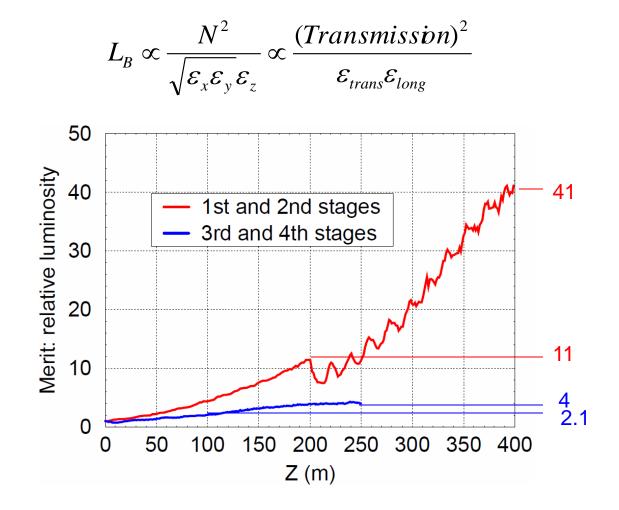

Cooling by 1st and 2nd stages: beam size and transmission

Cooling by 3rd and 4th stages: emittances and transmission (distribution after 1-2 stages is transformed by matrix and used for injection)


Cooling by 3rd and 4th stages: beam size and transmission

Transverse momentum is about 25% more than with previous design (because of less beta-function).

Probably, it explains a bit higher particle loss. Additional optimization is needed.


Phase space at the cooling

Red – injected beam, green – after 2nd stage, blue – at the end of the channel.

Longitudinal phase space is non-Gaussian because synchronous energy depends on betatron amplitude. The dependence is too complicated to control it.

Luminosity merit factors

Summary and Conclusion

- Multistage rectilinear channel can be applied for ultimate 6D cooling
- Using of a unified RF system is possible and expedient
- Lithium hydride wedge absorbers are applicable for finale cooling
- Required magnetic field is accessible for NbTi NbSn technology
- Based on these principles, 4-stages channel is designed having the parameters: length 650 m, RF 325 MHz, absorbers LH₂ and LiH, and providing the cooling: transverse emittance – from 20 mm to 0.32 mm longitudinal emittance – from 20 mm to 1.6 mm transmission w/o decay – 92% in stages 1-2, 84% in stages 3-4 transmission with decay – 67% in stages 1-2, 69% in stages 3-4

1.9

164

Luminosity merit factor is:		partial	entire	
	1 st stage	11.4	11.4	
	2 nd stage	3.6	41	
	3 rd stage	2.1	85	

Longitudinal matching of the stages remains the main problem

4th stage