

325 MHz Helical FOFO Snake for Initial Stage of 6D Ionization Cooling

Y. Alexahin (FNAL APC)

MAP vacuum RF 6D cooling mini-Workshop, November 5-6 2013

Basic Idea

Periodic orbit for p=200MeV/c

HFOFO Update - Y. Alexahin

There was a hope that placing RF between solenoids will help to increase maximum gradient – not confirmed thus far

- The idea: create rotating B_{\perp} field by periodically tilting solenoids, e.g. with 6-solenoid period.
- Periodic orbits for μ + and μ look exactly the same, just shifted by a half period (3 solenoids).
- With tune $Q_{\perp}>1$ (per period) $\mathbf{r}\cdot\mathbf{D}>0$ \Rightarrow muons with higher momentum make a longer path \Rightarrow longitudinal cooling achieved even with planar absorbers


 μ^+ and μ^- make the same trajectory with translation by half period (3 solenoids)

Х

NUFACT09, IIT Chicago

y

Beam from Dave's new rotator

Muon beam parameters obtained with Gaussian fit:

	N ^{(150<p<360)< sup=""></p<360)<>}	N ^(core)	p ^(cnt) , MeV/c	$\sigma_{\!\!\perp}$, cm	σ _p , MeV/c	β_z , cm		ε _{mN} , cm		ε _{6D} , cm³
μ+	7998	7329	248.0	7.6	29.8	69.9	1.2	2.2	2.4	6.2
μ-	9020	8248	248.8	7.4	28.2	71.9	1.2	2.1	2.2	5.6

 β_{\perp} =82.8 cm for p=248.4 MeV/c Bz=2T

N.B.: There is a large imbalance in the transverse normal mode emittances, can it be used for better matching?

325MHz HFOFO snake - Y.Alexahin,

Challenges

• Tight apertures with 325 MHz RF:

 $\begin{array}{l} \mathsf{R}_{\mathsf{window}} \texttt{=} \texttt{20cm must accommodate} \texttt{>} \texttt{2.5} \ \sigma_{\perp} \texttt{+} \texttt{helical orbits} \texttt{+} \texttt{dispersion contribution} \implies \\ \texttt{for} \ \sigma_{\perp} \texttt{=} \ \mathsf{R}_{\mathsf{window}} \texttt{/} \texttt{3} \ \texttt{and} \ \epsilon_{\perp \mathsf{N}} \texttt{=} \texttt{2cm} \ \beta_{\perp} \texttt{=} \texttt{53cm} \implies \texttt{very compact lattice } \texttt{!} \end{array}$

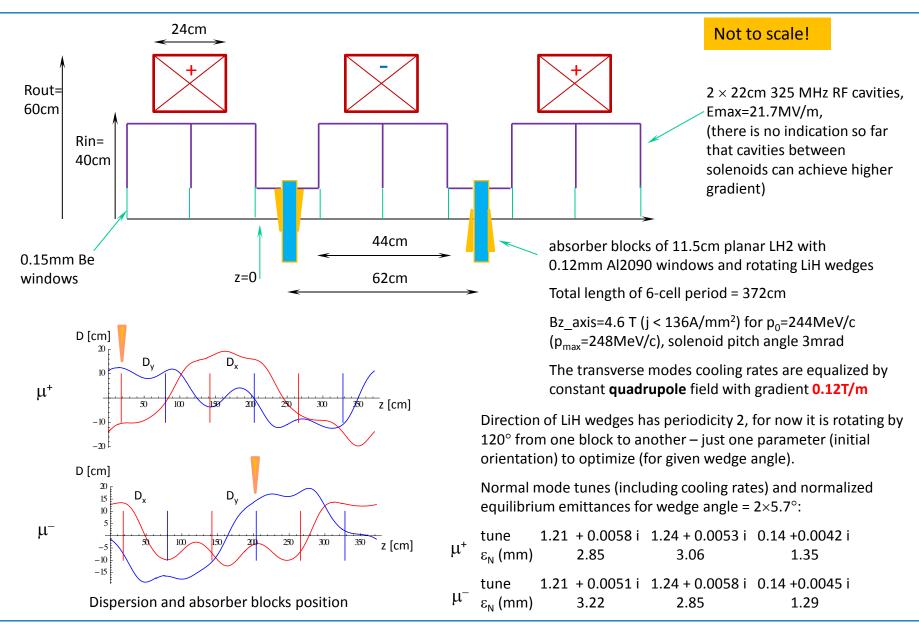
Large momentum spread

– a lot of trouble e.g. in β_{\perp} and orbit matching (for two signs simultaneously!)

High central momentum

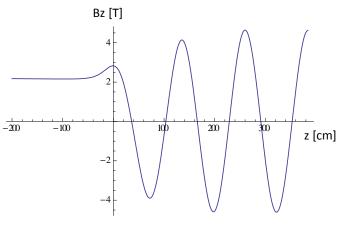
- difficulty with momentum acceptance due to slippage factor crossing 0.

• Strong momentum-betatron amplitude correlation due to low < β_{\perp} >

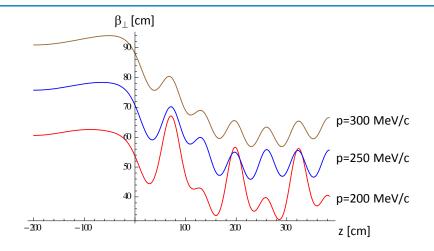

Solutions

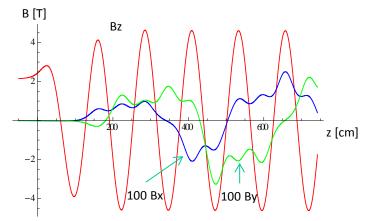
• Reduce helix amplitude

 \Rightarrow smaller dispersion and momentum compaction factor


- **Restore longitudinal cooling with wedges** (is it possible for two signs simultaneously?)
- Lower momentum as fast as possible
- Use special shape absorbers to introduce required to reduce overshoot

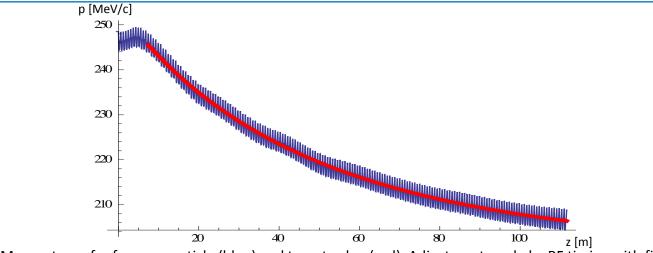
New Lattice Composition

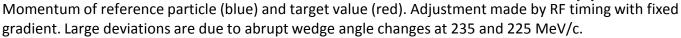


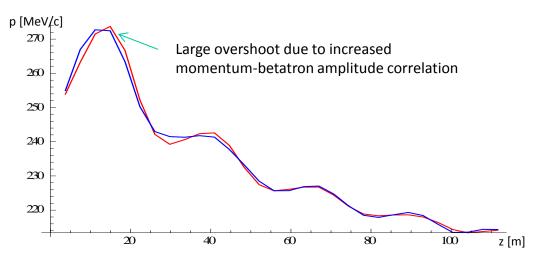

325MHz HFOFO snake - Y.Alexahin,

β-function and orbit matching

current in the first 4 solenoids (1st @ z=0 here) is used for β -matching to the rotator solenoid (increased to 2.2T)

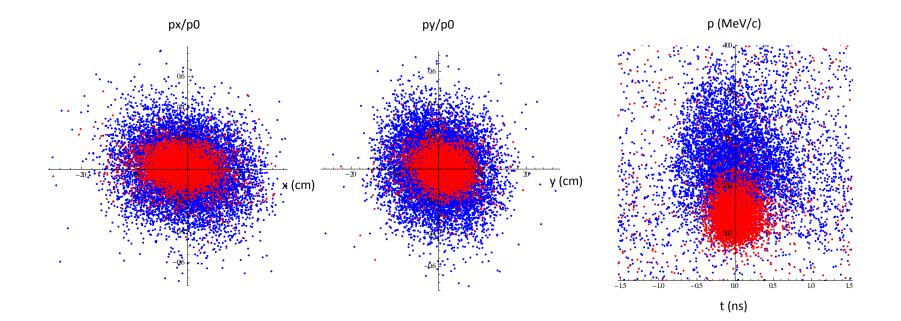


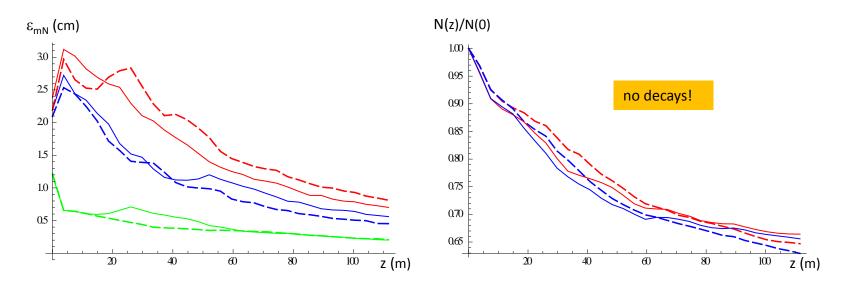



inclination of solenoids 3-9 is used for placing $\mu^{\scriptscriptstyle +}$ and $\mu^{\scriptscriptstyle -}$ on their periodic orbits

325MHz HFOFO snake - Y.Alexahin,

Deceleration (G4BL tracking)



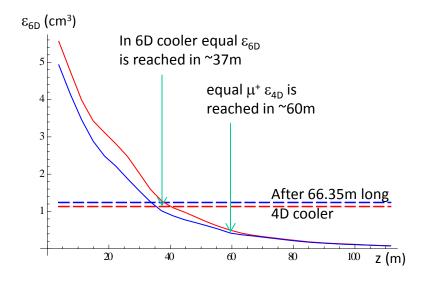

Central momentum from Gaussian fit: red – initial, blue – after an attempt to introduce momentum-betatron amplitude correlation with convex shape of the first 12 LH2 absorbers. No big effect on momentum, but transmission improved by ~3%

Phase Space Evolution

 μ^+ distribution after 1st (blue) and 30th (red) periods (distances 3.72m and 111.6m). μ^- look similar.

Please note large initial spread in p_ (±150MeV/c full width), may be β_{\perp} should be increased

Normalized emittances from Gaussian fit: μ^+ - solid lines, μ^- - dashed lines.


Transmission as a ratio of the number of muons in the core (Gaussian fit) - solid lines, and in the 150MeV/c <p< 360MeV/c range - dashed lines. Red lines - μ^+ , blue lines - μ^- .

Final values (Gaussian fit):

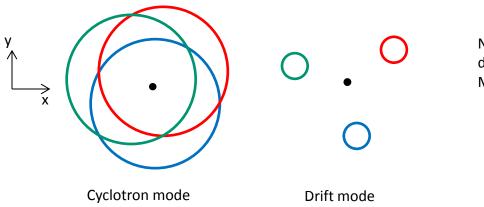
	N ^{(150<p<360)< sup=""></p<360)<>}	N ^(core)	p ^(cnt) , MeV/c	ε _{mN} , mm			ε _{6D} , mm³
μ+	5175	4868	214.3	2.0	5.6	7.0	80
μ-	5677	5409	215.0	2.1	4.5	8.1	76

325MHz HFOFO snake - Y.Alexahin,

Comparison with Dave's 4D cooler & Summary

Normalized 6D emittances from Gaussian fit: μ^+ - red lines, μ^- - blue lines.

Transmission of core muons at equivalent $\epsilon_{\rm 6D}$ points in 4D and 6D coolers:


	μ+	μ-
4D	0.83	0.83
6D (no decays)	0.77	0.75
6D @ 60m	0.71	0.69

Decays will decrease 6D transmission by another couple of %%.

- HFOFO snake performs just a bit worse than 4D cooler transmission-wise.
- HFOFO performance can be improved with:
 - better choice of the wedge roll angles
 - better and smoother distribution of cooling rates
 - optimization of p(z) (and of course all other parameters)
- The main concern is RF performance in strong B (which is now II E)
 - HFOFO snake can be easily adapted to HPRF

Normal Modes

Theory of normal modes in axisymmetric field: Burov, Derbenev, Nagaitsev, Phys.Rev. **E** 66, 016503 (2002)

Normalized emittances of the two normal modes differ by the value of the Canonical Angular Momentum (CAM) divided by mass:

 Muon CAM is mostly created at birth (only ~1/3 is inherited from pions) – not so much can be done about it

• The CAM sign is such that $\epsilon_{drift} > \epsilon_{cyclotron}$ – the muon beam can not be cooled without field reversal

• It seemed possible, after a single field reversal, to cool the cyclotron and longitudinal modes for both muon signs simultaneously using conical absorbers, ~ constant Bz and sinusoidal By

• Linear theory predicted cooling for all three modes (though very weak for the drift mode). Tracking demonstrated a complete and unmitigated disaster