Experiment Summary & The CEPC-SppC Study Group – Status

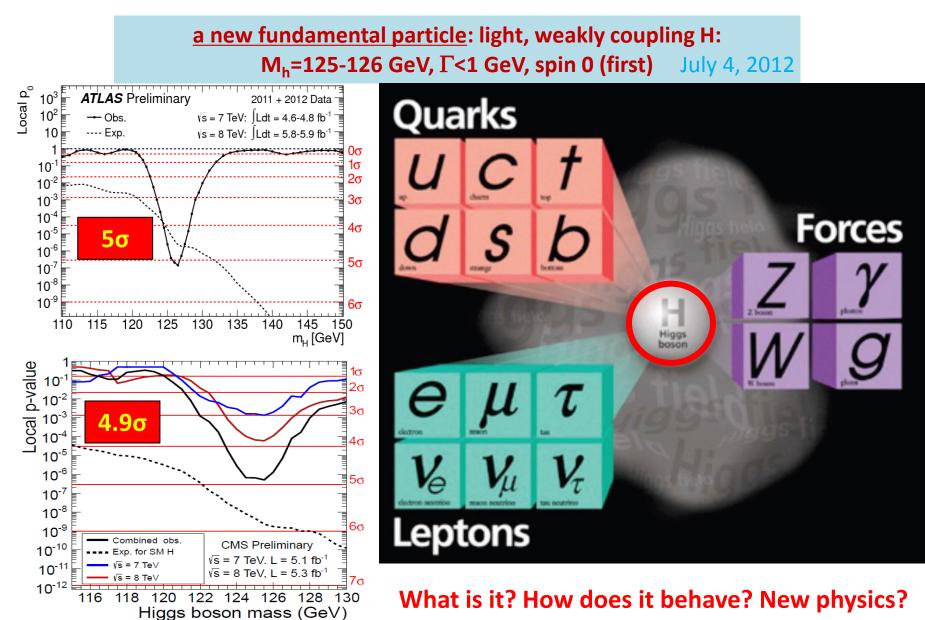
XinChou Lou Institute of High Energy Physics Beijing, China

The CEPC-SppC Study Group Status Report

On Behalf of the CEPC-SppC Study Group

Outline

- **CEPC-SppC** a Higgs factory and a high energy pp collider
- Organization
- PRE-CDR physics, feasibility, technology, design, schedule, cost estimate
- Current status

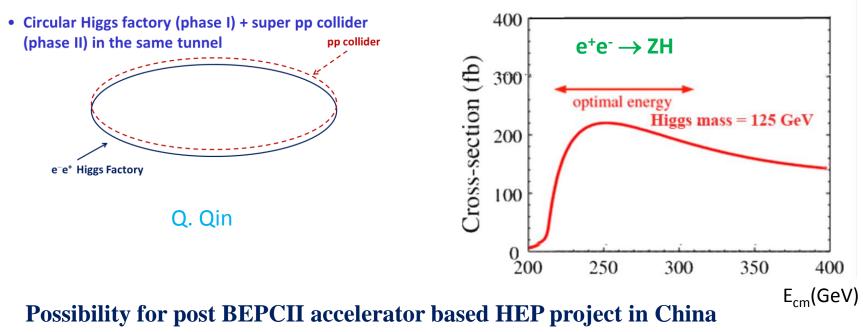

theory, accelerator, detector, site consideration, civil engineering, manpower, etc.

• Plan and prospects

The CEPC-SppC Study Group

CEPC

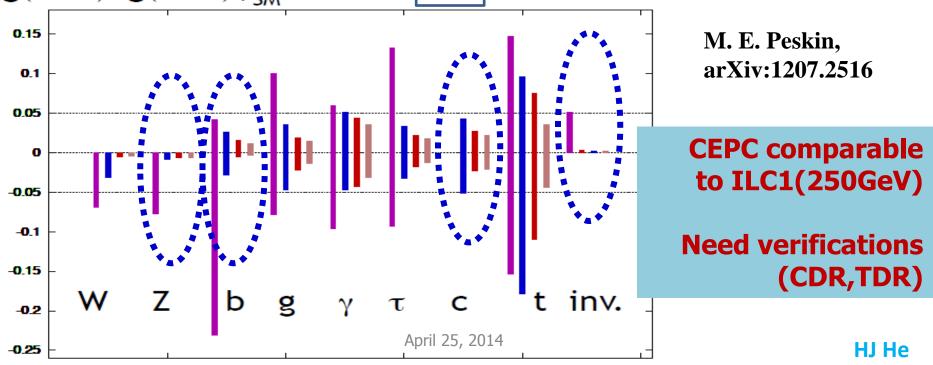
A relative low Higgs Boson mass – makes a circular e⁺e⁻ collider as a Higgs factory viable?



CEPC-SppC

Phase 1: e⁺e⁻ Higgs (or Z) factory

 E_{cm} ≈240GeV, luminosity ~2×10³⁴ cm⁻²s⁻¹, can also run at the Z-pole precision measurements of the Higgs (Z) boson


Phase 2: a discovery machine; pp collision with E_{cm} ≈ 50-100 TeV; ep option aiming at discovery of BSM physics

(other choice: τ-charm factory)

Circular e⁺e⁻ : Precision Higgs Machine

- e⁺e⁻ Higgs Factory (240GeV) can more precisely measure Higgs properties than LHC: Mass, J^{PC}, Couplings, especially h-ZZ, h-bb, h-ττ, couplings, and invisible decays. It can also measure h-cc Coupling, which cannot be carried out at LHC.
- Most of important Precision-Higgs-Tests can be already done at HF(240GeV), without ILC500. Higgs self-couplings'll be probed at Super pp(50-100TeV). g(hAA)/g(hAA)|_{SM}-1 LHC/ILC1/ILC/ILCTeV

Considerations for CEPC-SppC

- A circular Higgs factory fits our strategic needs in terms of
 - Science (great & definite physics)
 - Timing (after BEPCII)
 - Technological feasibility (experience at BEPC/BEPCII and other machines in the world),
 - Manpower reality (our hands are free after ~2020)
 - Economical scale (although slightly too high)
- The risk of no-new-physics is complement by a pp collider in the same tunnel
 - A definite path to the future
- A unique position for China to contribute at this moment:
 - Economical growth
 → new funding to the community
 - Large & young population
 new blood to the community
 - Affordable tunnel & infrastructure
 - If no new project, no new resources → It is a pity if we miss it

CEPC-SppC Organization

CEPC研究项目启动

- The Chinese CEPC+SppC Study Group kick-off meeting took place Sept. 13-14,2013
- Participation by over 120 physicists
- Domestic accelerator, theoretical and experimental physicists were organized

CEPC – Web & Documentation

http://cepc.ihep.ac.cn

<u>Not displayed</u>: job opportunities, external links, etc.

- Internal : link to the internal Twiki
- <u>Events</u> : record of past events and announcements of future events
- HOME : general introduction

中文版准备中

- ABOUT CEPC : introduction to CEPC
- ORGANISATION : organisational

structure and WG activities

- **<u>RESULTS</u>** : publications and more
- WHY SCIENCE : motivations to pursue

basic scientific researches

JOIN US : subscribe to express interests

CEPC Logo your creative idea to: <u>cepc-admin@ihep.ac.cn</u>

Institute of High Energy Physics

Contents

Hongbo Zhu

PRE-CDR

Pre-CDR (by end of 2014)

- main physics topics and motivations;
- initial collider design(s);
- detector technologies and conceptual configuration
- core physics sensitivity (initial)
- site requirement, reality check on civil engineering
- crude cost estimates
- etc.

Established persons in charge of the Pre-CDR writing

Theory – Hong-jian He (Tsinghua), Shouhua ZHU (PU) and Nima Arkani-Hamed (Princeton)

Accelerator – Weiren Chou (Fermi Lab)

Detector & Simulation – Yuanning GAO (Tsinghua)

PRE-CDR

THEORY

Center for Future High Energy Physics

- Aiming at "world class particle physics"
- "CFHEP" is established at IHEP
 - Prof. Nima Arkani-Hamed is now the director
 - Many theorists (coordinated by Nima and Tao Han) and accelerator physicists(coordinated by Weiren Chou) from all the world have signed to work here from weeks to months.
 - Current work:
 - Workshops, seminars, public lectures, working sessions, ...
 - Pre-CDR
 - Future works (with the expansion of CFHEP to include Exp. & more Acc.)
 - CDR & TDR
 - Engineer design and construction
 - A seed for an international lab →
 For the world's HEP community

FIER Center for Future High Energy Physics

Visits by foreign theorists to IHEP, ITP and universities

Panel discussion "Where will HEP go after the Higgs Boson has been discovered?" in Beijing

attended by > 600 people

Theory: Physics Cases for CEPC (E_{cm}≈240GeV, luminosity ~2×10³⁴ cm⁻²s⁻¹)

Light, weakly coupling H: M_h =125-126 GeV, Γ <1 GeV, spin ~0 (first)

- Verification the 125 GeV boson is the SM Higgs
- Precision measurement of the Higgs Boson

mass, width, couplings to final states;

look for deviations from the SM

Does the Higgs decay into something unexpected?

Are there more than 1 Higgs boson?

Use the Higgs boson to look for new physics

Higgs(~125 GeV) physics topics being identified and developed by the Theory Group and CFHEP

Theory: Physics Cases for SppC (50-100 TeV pp collider L≈2×10³⁵cm⁻²s⁻¹)

By then, all all Higgs study and searches for SUSY and Dark Matter has been conducted at the HL-LHC

It is a discovery machine (?)

MSSM Higgs

Look out for new physics beyond the Standard Model

Search for SUSY

Search for WIMP and dark matter

Frontier physics topics being identified and developed by the Theory Group and CFHEP

THEORY Preliminary Conceptual Design Report

Higgs Physics

- Introduction
- Theoretical Overview
- Prospects for Higgs Measurements at the LHC
- Higgs Physics at the CEPC
- High Energy Upgrades: the SppC

SM Physics

Beyond Standard Model: Supersymmetry Beyond Standard Model: Alternatives Flavor physics

TeV Cosmology

- Dark matter
- Electroweak baryognesis

Heavy Ion Physics Monte Carlo Tools

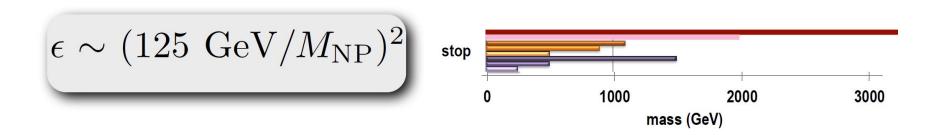
WHAT IT TELLS US $V = (\mu^2) |\phi|^2 + \lambda |\phi|^4$

the only dimensional parameter allowed by SM symmetry.

The "large hierarchy":

$$m_h^2 - m_{h^0}^2 \sim -\frac{3}{8\pi^2} y_t^2 \Lambda^2$$

Michael Dine's cancelation at Planck scale: $m_{H}^{2} = 36,127,890,984,789,307,394,520,932,878,928,933,023$ -36,127,890,984,789,307,394,520,932,878,928,917,398 $= (125 \text{ GeV})^{2}$! ?


T. Han

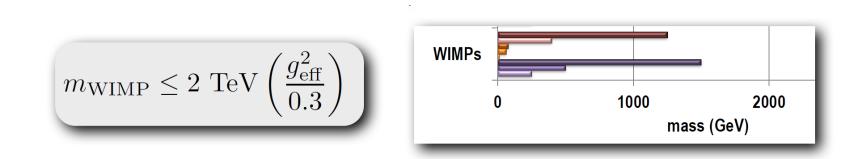
10⁻³ fine-tune

"Naturalness" \rightarrow TeV scale new physics.

Physics Cases for SppC

Naturalness

- LHC: TeV scale for top partner, ε~1%
- HL-LHC:


increase the reach by 10-20%, measure top partner property

- 100 TeV VLHC: 10 TeV level, ε~10⁻⁴
- ILC: E_{cm}/2, 1 TeV machine, ε~1%

Precision measurements, multi TeV level

Physics Cases of SppC

Dark Matter

• Dark matter at TeV scale (Wino or Higgsino LSP)

→ can not be explored at LHC 14 with 300 fb⁻¹

enhanced reach at VLHC 33 or 100 TeV

Smaller dark matter mass

→ low mass loopholes of suppressed coupling or compressed spectrum, small MET

→ e+e- collider, reach E_{cm}/2.

PRE-CDR

ACCELERATOR

CEPC Preliminary Conceptual Design Report

Introduction

CEPC - machine layout and performance

- **CEPC** technical systems
- **CEPC** injectors

Upgrade to SppC

- Key accelerator physics issues
- Key technical systems
- Reconfiguration of the accelerator complex

Alternative designs

- Limited scale Higgs factory
- ep
- γγ

Civil construction

Environment, safety and health considerations R&D programs Project plan and cost estimates

CEPC – current accelerator status

e+e- collider as a Higgs factory

- Beam energy ~ 120 GeV
- Synchrotron radiation power ~50 MW
- **50** in circumference (two options)

⁴ base line

Proton-proton collider

- Beam energy ~50-100 TeV
- 50 or 70 (100) km in circumference
- Superconducting, high-field magnets (~20T)

CEPC – current accelerator status

Main ring:

- A FODO lattice in arcs with 60 degree phase advances
- 16-folder symmetry
- RF sections distribute around the ring
 - f_{rf} = 700MHz is chosen
- Pretzel scheme is adopted for multi-bunch collision
- Double ring option is under-investigation
- ATF2 type and ILC type FFS designs are currently under study

Linac:

• 6 GeV–Linac will be adopted

Booster:

• In the same tunnel of the collider (6 – 120 GeV)

CEPC – current accelerator status

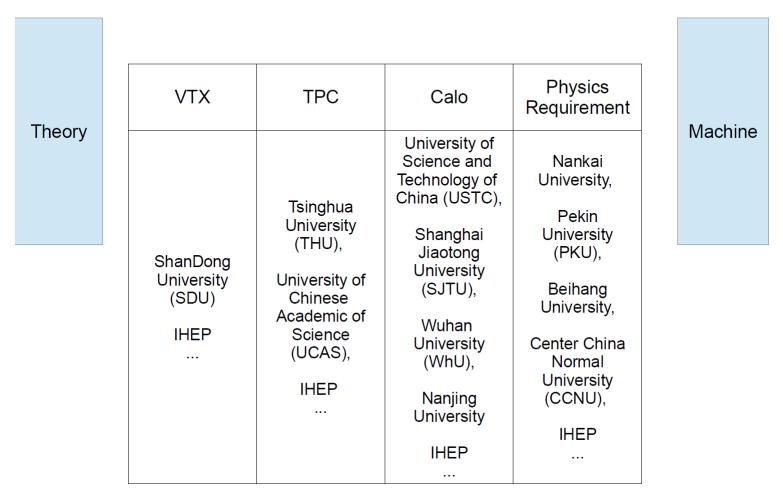
preliminary parameters

Accelerator Parameters]
Beam energy [E]	GeV	120	
Circumference [C]	km	53.6	
Luminosity [L]	cm⁻²s⁻ ¹	1.82E+34	
SR power/beam [P]	MW	50	
Bending radius [ρ]	m	6094	
NIP		2	input
n ^B		50	
filling factor [κ]		0.71	calculated
Lorentz factor [_γ]		234834.66	simulation result
Revolution period [T ⁰]	S	1.79E-04	
Revolution frequency [fo]	Hz	5591.66	
Magnetic rigidity [Βρ]	T∙m	400.27	
momentum compaction factor		4.15E-05	
Energy acceptance Ring[η]		0.02	
cross-section for radiative Bhabha scattering [σee]	cm ²	1.53E-25	
lifetime due to radiative Bhabha scattering $[\tau_L]$	min April 25, 2	55.42	
build-up time of polarization $[\tau_p]$	min	21	

PRE-CDR

Detector & Simulation

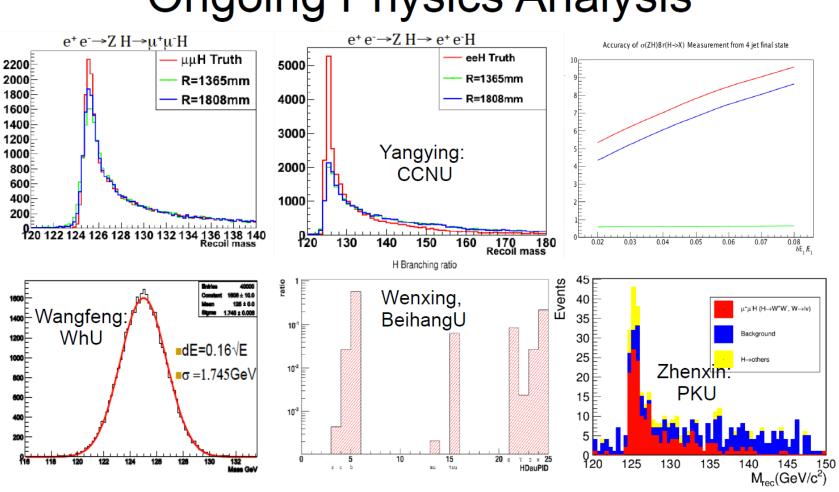
CEPC – Detector Considerations


Benefit greatly from the work done with the ILC

Start with the ILD

- ✓ Adopt the detector technologies and basic layout
- detector operates without the power pulsing
- vary detector geometries
- will implement simulation to evaluate the detector performance at the CEPC and do the cost estimates

CEPC – Detector Considerations


CEPC Detector: Institutes

April 25, 2014

M. Q. Ruan

CEPC – Detector Considerations

Ongoing Physics Analysis

Duchun(IHEP): generator development/comparison

April 25, 2014

M. Q. Ruan

PRE-CDR

Site Consideration & Civil Engineering

Site Consideration & Civil Engineering

- Current IHEP campus is too small to accommodate a large facility
- Is there any well suited site for a large lab (>800 acres) in northern China?
- > Does the local government display strong support for the lab?

IHEP management visited 14 sites in northern China (Hebei, Henan provinces)

```
Use "Qing Huang Dao" as an example –
```

CEPC – Site Investigation A good example is Qing Huang Dao秦皇岛:

300 km from Beijing

3 hours by car; 1 hours by high speed train

April 25, 2014

Y. F. Wang

PRE-CDR Civil Engineering

Tunnel – construction plan, ventilation, caverns, etc. Ground facilities– halls, power stations, cooling, shafts, access points, etc. Other – green design-operation, length of construction, cost

Baseline Consideration:

黄河勘测规划设计有限公司 (private company)-

- ▶ 秦皇岛抚宁地区为概念设计地点
- > C=50km圆环形隧道,截面直径R~5,7m,地下50-100m
- ▶ 倾斜度控制在4‰以内(便于排水)
- ▶ 节能减排:为节约能源,减少浪费,设法进行二次利用
- ▶ 在环形隧道地面设有5000亩办公园区 820 acres
- ▶ 隧道供电负荷、区域变电站,园区需要若干小变电站
- ▶ 使用硬岩TBM或盾构机的比较造价清单

高能所-

- ▶ 估算与制冷机配套的冷却塔占地面积
- ▶ 安排黄河公司对CERN LHC现场考察活动
- ▶ 提供给黄河公司有关的资料

双方确定交流会,保持及时沟通

PRE-CDR

Manpower, etc.

April 25, 2014

CEPC – Manpower Considerations

Training young people to address manpower shortage

Recruitment: postdocs and staff at IHEP

CEPC Timeline (dream)

Pre-study, R&D and preparatory work

- Pre-CDR (by end of 2014) to be ready by China 13th 5-year plan
- Pre-study 2013-2015
- ➢ R&D 2016-2020
- Engineering Design 2015-2020

Construction: 2021-2027

Data taking: 2028-2035

SppC Timeline (dream)

Pre-study, R&D and preparatory work

- Pre-study 2013-2020
- ➢ R&D 2020-2030
- Engineering Design 2030-2035

Construction: 2035-2042

Data taking: 2042 -

CEPC – Prospects

Theory → fully explore physics with the Higgs boson & in the energy frontier

Detector: benefits from ILC, FCC, LHC experiments + own effort
 → excellent design, cost effective, fully functional

Accelerator

→ cost effective, expandability

International cooperation: LHC, ILC, FCC and CEPC and others

This is part of a global effort to make sure HEP's future is very bright

Summary of Experiment

Accelerator

Magnets for Future pp Colliders – Part I Steve Gourlay Magnets for Future pp Colliders – Part II Soren Prestemon

Detector and Experiments

Considerations for Detectors for a 100 TeV Proton-Proton Collider Peter Loch Thoughts on Event Reconstruction & Particle Flow Richard Cavanaugh Lesson from 8 TeV LHC – What Did We Learn? Maurizio Pierini Panel Discussion: LHC Discovery Story F. Würthwein

Trigger

Triggering Elliot Lipeles

Simulation and Tools

DELPHES – Fast Simulation Michele Selvaggi Parton Distribution Functions Joey Huston MEM LO/NLO Merging with Parton Showers Stefan Prestel Progress/status in NOL Computations for the SM and BSM Fabio Maltoni

THE ACCELERATOR

High Field Magnets

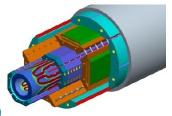
April 25, 2014

Accelerator Magnets

Then . . .

The Tevatron (Fermilab) 1983

4.4 T , NbTi, 4.2K

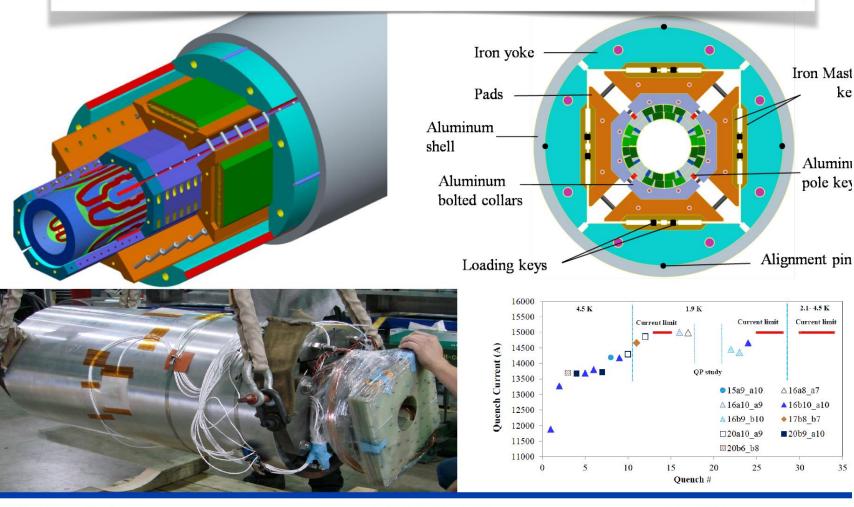

HERA, SSC, UNK, RHIC

And now . . .

LHC 2007 8.3 T, NbTi, 1.9K Limit of NbTi

US LHC Upgrade Nb₃Sn quadrupoles

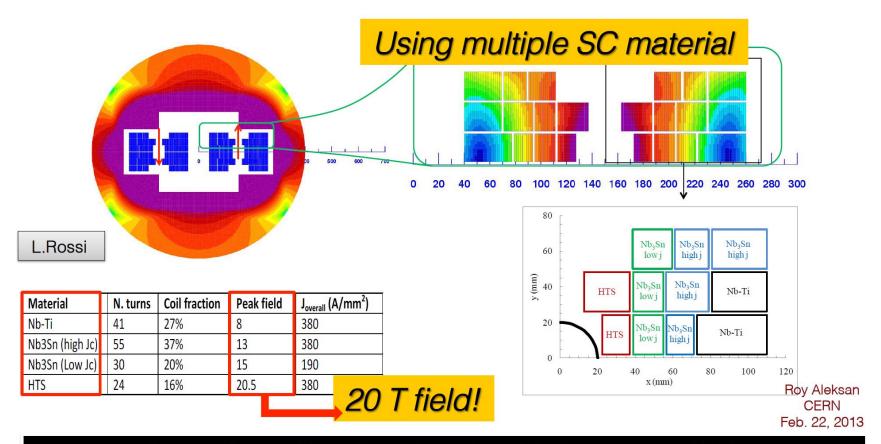
Operating until about 2030


About 27 km of NbTi magnets running at 1.9K and (hopefully) 7 - 8T

No HTS accelerator magnet has yet been built

Steve Gourlay

Nb₃Sn technology is being readied by LARP: HQ = QXF = Hi-Lumi upgrade


Design, fabrication, and test results from LARP: FNAL, LBNL, BNL

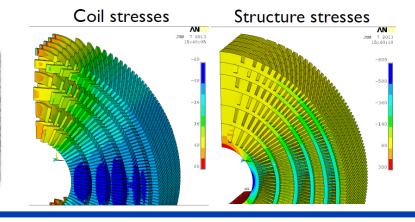
)TeV workshop - SLAC

Soren Prestemon-LBNL

Go for 20 T First consistent conceptual design

Magnet design: 40 mm bore (depends on injection energy: > 1 Tev) Approximately 2.5 times more SC than LHC: 3000 tonnes! (~4000 long magnets) Multiple powering in the same magnet for FQ (and more sectioning for energy) Only a first attempt: cost and other shapes needs to be also investigated

Cost of Nb₃Sn: 4 times Nb-Ti Cost of HTS: 4 times Nb₃Sn

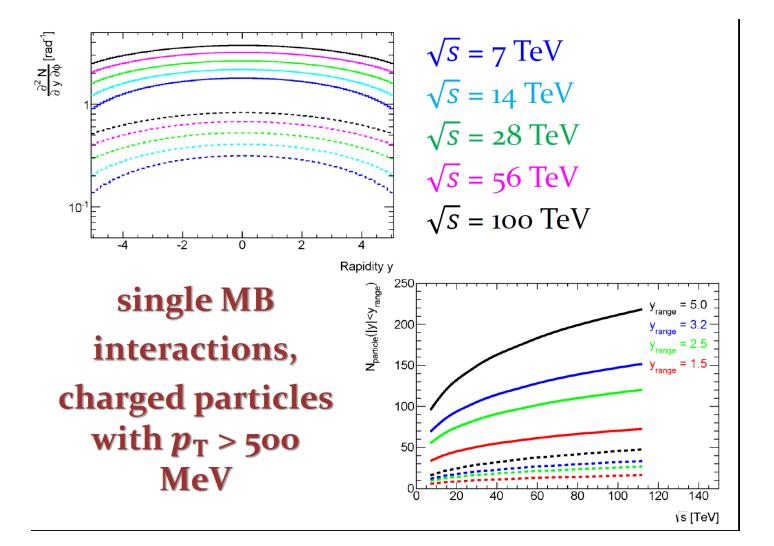

The last 2 - 3T is expensive!

Steve Gourlay

CCT appears to meet required characteristics (Needs demonstration)

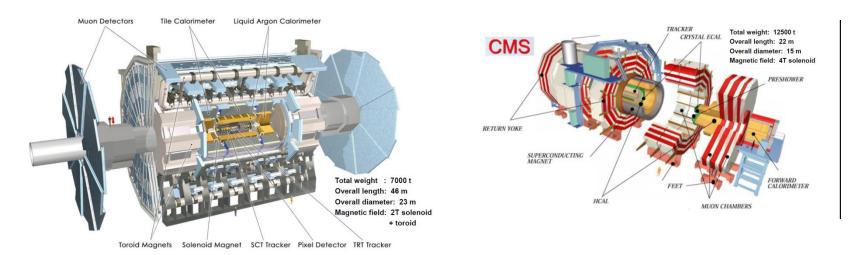
- Stress is captured by rib, transferred to mandrel
 - ➡ No accumulation of stress on the mid plane
 - ➡ No stress issue with larger bore
- Every layer can use different cable size
 - ➡ Allows near optimal grading for conductor efficiency
 - ✓ Significant saving in Nb₃Sn over $Cos(\theta)$ designs
- Conductor mass scales with bore radius only
- Excellent field quality ("for free")
- Fabrication:
 - Minimal external structure
 - ➡ No spacers, end parts, etc.
 - ➡ Simple winding ▷ Industrialization

)0TeV workshop - SLAC


Soren Prestemon-LBNL

April 23, 2014

THE DETECTOR & EXPERIMENTS


April 25, 2014

Multiplicities at 100 TeV

Does experimental environment require very differer detectors?

Final states – extended phase spaces Higher p_T of signal objects (leptons, photons and jets) Boosted topologies of SM and BSM particle decays Precision physics reconstruction at larger (pseudo)rapidities Experimental backgrounds – pile-up Technologies for suppression and correction Signal significance – lowest reliable p_T measurement for physics Long term detector survival in high radiation environment

Use ATLAS, CMS detectors to get expectations for 100 TeV
 Use ATLAS, CMS full simulation for detector design for 100 TeV
 P. Loch

P. Loch

Tracking

Resolution requirements can be stringent

Spatial resolution of O(10 μ m) to efficiently separate O(10-100?) pile-up vertices – depending on "beam crossing diamond" size...

Good (transverse) momentum resolution beyond up to several 100 GeV - highly boosted jets may be too compact for calorimeter but may have stiff prongs (or core) to be resolved

Tracking is essential for refinement of kinematics (particle flow, leptons), in-situ calibration reference, vertex associations, pile-up suppression, ...

Operational concerns

Mostly radiation hardness of today's silicon pixel based trackers (best spatial resolution!) in environments with significantly higher particle fluxes

Physics performance

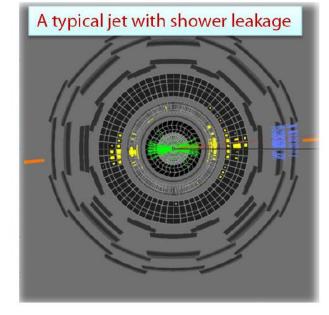
Extend tracking to more forward regimes – today only 50% of the full detector coverage is instrumented with tracking (physics case: VBF/VBS signatures in high pile-up...)

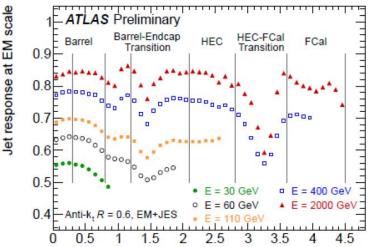
Calorimeters (1)

Biggest concerns

Need to avoid tails in (jet) response to allow effective searches – avoids fake missing transverse momentum etc.

Most uniform response across the whole acceptance in pseudorapidity


Absorption characteristics

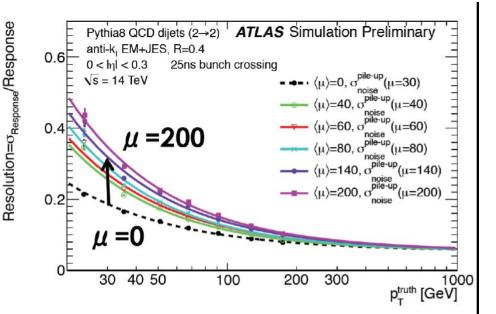

Depth for hadrons needs to accommodate O(10) TeV jets (energy) High energetic EM particles should be stopped in EM calorimetry – present day calorimeters may be a bit shallow...

Signal stability

Highly radiative environment may affect signal yield and proportionality to deposited energy

Need to focus on technology providing stable signals (within a few %) for

P. Loch


Calorimeters (2)

Electron/photon energy response

- Excellent signal linearity and resolution possible even in the most hostile environments
- High energy resolution limit comparable to zero

Jet energy resolution

Lower energies strongly affected by pile-up High energy limit affected by hadronic calibration – but few % («10%) possible

Detector design guidelines

Consider using ATLAS/CMS full simulation to study 100 TeV collisions

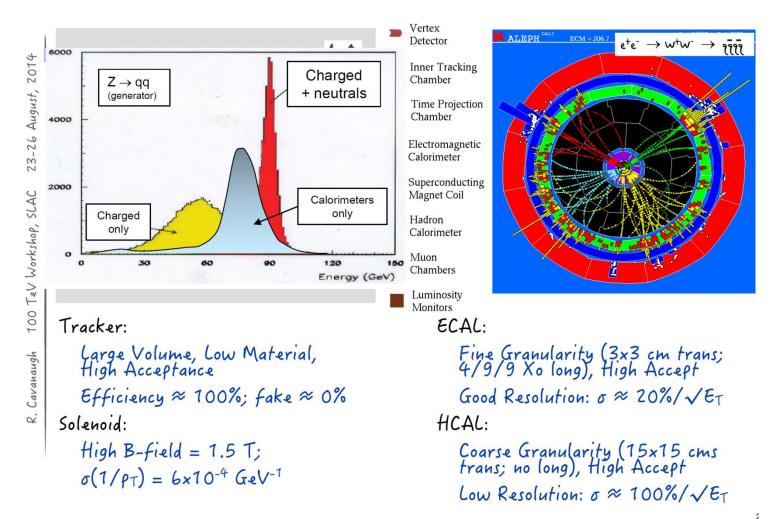
DELPHES etc. is nice, but has limited messages which may be severely misleading concerning detector performance and capabilities – both optimistic and pessimistic...

Needs significant help (and resources?) from the experiments – not easy with upcoming LHC Run II and upgrades

Maybe a exploratory study is possible – pile-up + lepton final state signal?

Simplify (homogenize) technologies

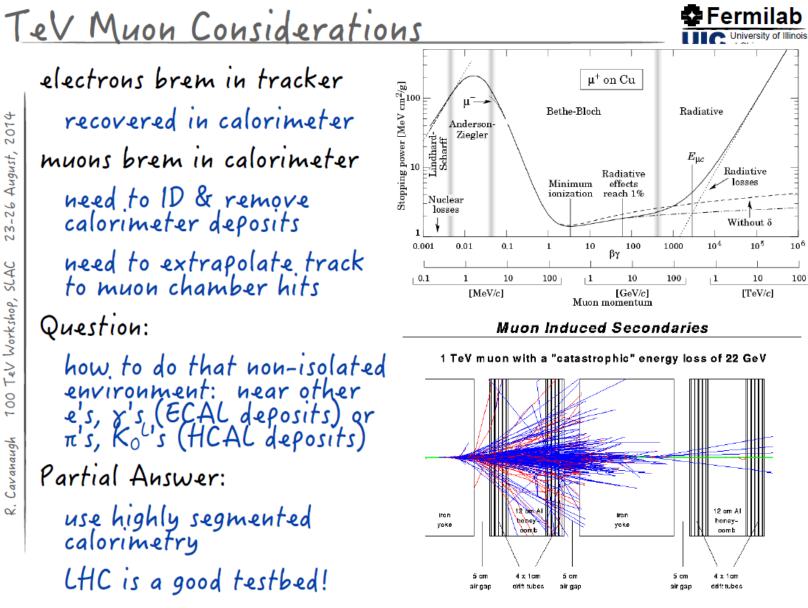
Avoid complex transition regions in calorimetry as much as possible – in particular between EM and HAD


Finer readout at higher pseudorapidity – only useful if shower size can be reduced...

Explore tracking in forward region

Helps with jet categorization, pile-up suppression, etc. – good physics case outside VBF/VBS based searches?

Detector suitable for Particle Flow



At 100 TeV, possible large fraction of neutrinos from radiation of W and semi-leptonic B decays.

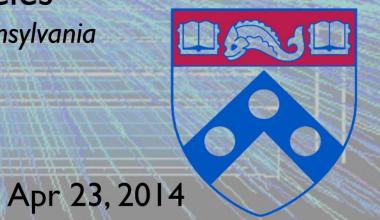
April 25, 2014

Richard Cavanaugh

100 TeV Workshop, SLAC

Richard Cavanaugh

Parametrized detector for 100 TeV proton collider (baseline)


- 1. Large Solenoid + return yoke: Magnetic Field: 5T, 24m long and 5m radius
- 2. Central Tracker (including pixel detector)
 - Acceptance within $|\eta| < 4$
 - Momentum resolution $\sigma/p_T pprox 1.5 imes 10^{-4} \oplus 0.005$
 - Efficiencies similar (not same) to CMS Phase-II ECFA studies
- 3. EM Calorimeter (PbWO4) $\sigma/E=2.0\%/\sqrt{E}\oplus 0.5\%$
- 4. Hadronic Calorimeter $\sigma/E = 50\%/\sqrt{E} \oplus 3\%$
- 5. Forward Calorimeter (needed for VBF and other studies) up to $|\eta|$ ~ 6 $\sigma/E = 100\%/\sqrt{E} \oplus 5\%$ 6. Muon detector
 - Acceptance within $|\eta| < 4$
 - Momentum resolution $\sigma/p_T pprox 1\%$ @100 GeV 10%@10s TeV
 - Efficiencies similar (not same) as CMS Phase-II ECFA studies

April 25, 2014

Triggering at 100 TeV?

Elliot Lipeles University of Pennsylvania

100 TeV Workshop

Machine Parameters are not very defined yet

Consider two main cases:

Luminosity	Bunch Spacing	Pile-up	
5x10 ³⁴	25 ns	170	
5×10 ³⁴	5 ns	34	

Triggering Purposes

Hardware = level-1 (L1)

Goal: Reduce data volume extracted from front-end chip

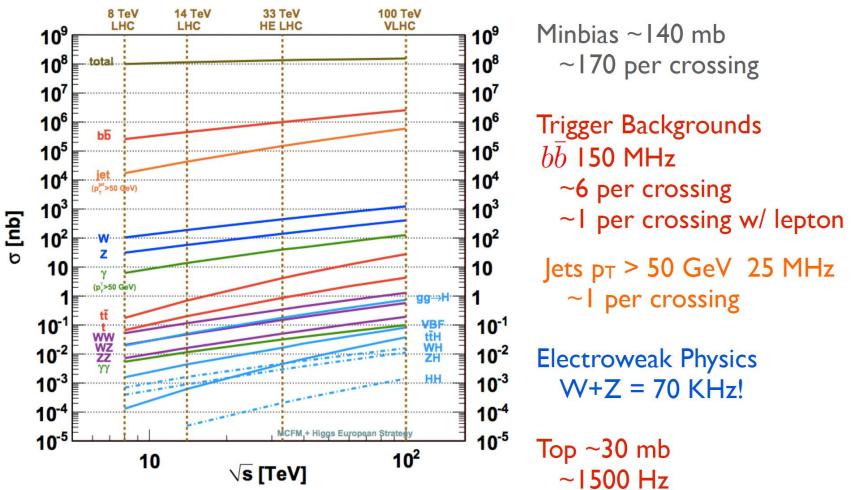
•Fundamental difference between inner detector (tracker) and outer detectors (calorimeter and muons)

 $\bullet Tracker$ readout is necessarily in the tracker volume for a 4π detector

•Contributions to tracker material

•Tracker plays a big role in L1 discussion

•Outer detector readout is ~external to tracking volume •Assume full beam crossing rate readout and use in LI


Software = high-level trigger (HLT)

Goal: Reduce stored data volume

- •PC-based with software
- •Expect hardware to keep up with industry = Moore's Law?
- •Expect affordable storage to scale with Moore's Law?

The Landscape

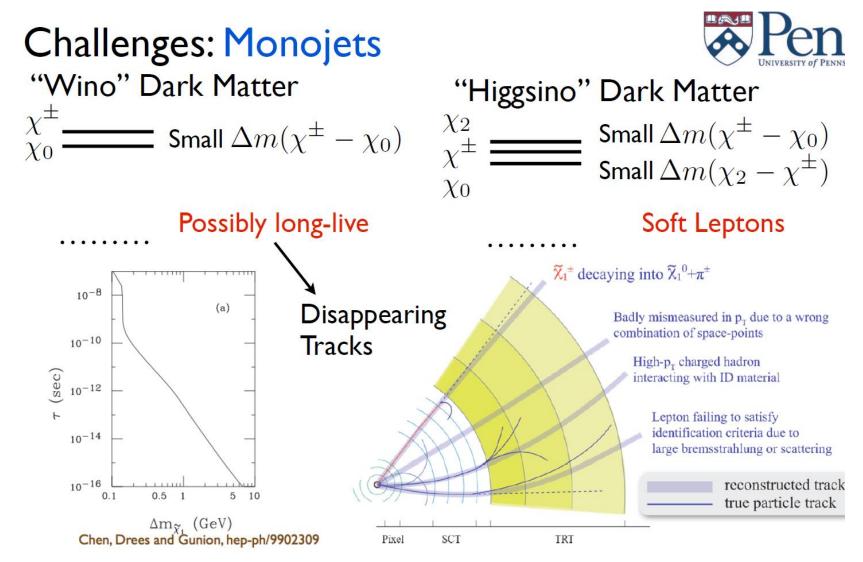
Moore's Law easily accommodates saving all the electroweak

What do we want to trigger on?

Easy stuff... core high pT program

•Very high p_T leptons (incl τ), photons, jets, and met

•Hadronic SUSY with MET (with or without MET), Z', WW scattering, anomalous TGCs/QGCs, running of couplings


Pretty easy... single leptons

- •precision/rare Higgs, top
- •Many HH channels
- Much of electroweak SUSY

•Exotics (monopoles, long lived hidden valley)

• Displaces Vertices

Distinctive offline signature; Need to trigger on moderate MET High χ_0 mass could mean small cross-section

Future links

Current (rad hard) ~ 10 Gbit/sec ("upgraded GBT", 65 nm)

```
Multilevel (should be rad hard)
~ scale by 2-4
```

```
Industry, Multiwave length (rad hard???) ~ scale by order 100+?
```

Unclear whether full tracker readout will be possible Depends on rad hard link development Reasonably Moore's law assumptions makes HLT probably CPU and storage probably not a big issue

Tracking is the core question for 100 TeV

- •Difficult channels examples: HH to bbTT, Monojets
- •Rols or Self-seeded both good solutions for local high-pT objects
- •MET is probably the trickiest case

Full tracking at beam crossing rate technologies:

- •Data extraction depends on rad hard link development
- •Pattern recognition, new technologies look promising
- •Correlating sensors at front-end = "Intelligent" tracking

SIMULATION & TOOLS

Good description of the SM in order to discover BSM, DM, ... Detector simulation tools, be adequate & to get the statistics "Magnet technology has advanced considerably" – Soren Prestemon "Technology for 16T magnets is in hand, but there is a lot of room for improvement. And we have an idea . . . " – Steve Gourlay

"We don't know how to build the detector. "

"We need to start R&D now to not to loose the skills" - Peter Loch

"Reasonably Moore's law assumptions makes HLT probably" . "Tracking is the core question for 100 TeV" – Elliot Lipeles

"A 100 TeV pp collider will be exploring new kinematic regions in x and Q², where current knowledge is just extrapolation" –Joey Huston

Thoughts –

- **Start and keep strong R & D programs in key technologies and tools**
- Engineering challenges: High quality components (~100 km), cost control...
- **Ramp up pp energies gradually? 40, 60 80, 100 TeV, step by step?**
- **Keep up with the work give our children (or grandchildren) a chance**

BACKUP

April 25, 2014

International Workshop Held in Beijing Dec. 16-17, 2013

The workshop will bring together people interested in circular high energy e⁺e⁻ colliders as a Higgs factory as well as a future circular high energy pp collider beyond the Higgs factory, and will discuss critical issues in accelerator technology, detector design and in theory on the precision measurement of the Higgs and the physics with pp collision at 50-100 TeV.

- First International CEPC Workshop
- CERN FCC participation
- Jump start the international coordination

Monday, December 16, 2013

09:00 - 10:35 Session I Convener: Prof. Xinchou Lou (IHEP, Beijing) 09:00 Welcome and Introduction 15' Speaker: Prof. Yifang Wang (IHEP) 09:15 Physics Opportunities 40' Speaker: Prof. Nima Arkani-Hamed (Princeton) 09:55 The HL-LHC Physics Program 40' Speaker: Dr. Takanori Kono (KEK/Ochanomizu)

10:55 - 12:05 Session IIConvener: Dr. Frank Zimmermann (CERN)10:55 First Look at the Physics Case of TLEP 35'Speaker: Prof. Alain Blondel (DPNC UNiversity og Geneva)

11:30 CEPC Machine Optimization and Final Focus Design 35' Speaker: Dr. Dou Wang (IHEP)

14:00 - 15:45 Session IIIConvener: Prof. Qing QIN (Institute of High Energy Physics)14:00 Beam-beam Study of TLEP and Super-KEKB 35'Speaker: Dr. Demin Zhou (KEK)

CEPC – theory effort

Great effort by Chinese theorists, (Hong-jian He & Shouhua Zhu)

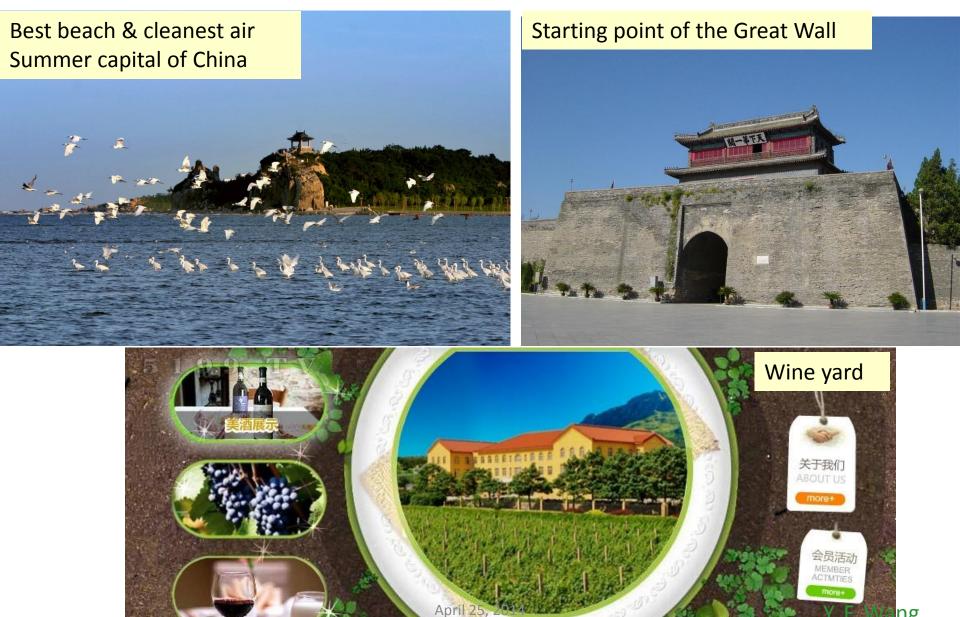
- Sub-groups formed
- Meetings
- Document "Higgs Physics at CEPC-SPPC " in progress

Higgs Physics at the CEPC-SPPC 1 Introduction $\mathbf{2}$ Ning Chen,^a Hong-Jian He,^a Tao Liu,^b Shou-hua Zhu^{c,d} ^a Center for High Energy Physics, Tsinghua University, Beijing, 100084, China ^bDepartment of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong ^cInstitute of Theoretical Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China 3 ^dCenter for High Energy Physics, Peking University, Beijing 100871, China ABSTRACT: In this report, we survey Higgs physics in the SM and beyond, review the current measurements of Higgs physics at the LHC, and present the potential studies of Higgs physics at the CEPC-SPPC. 4.4 Searching for Exotic Decays of the SM-like Higgs Boson 72 5 High Energy Upgrades: the SPPC 73 5.1 Probing Couplings of the SM-like Higgs Boson 73 4 5.1.1 Perturbative Unitarity Bounds 735.1.2 Measurements of the Higgs Self-Coupling 77 5.2 Searching for Non-standard Higgs Bosons at the SPPC 78 5.2.1 Perturbative Unitarity Bounds 78 5.2.2 Searches at the SPPC 81 5.3 Higgs Boson: Fundamental vs. Composite 82 April 25, 2014 6 Conclusion

Inci	loudellon						
1.1	General Strategies for Higgs Measurements						
1.2	Colliders of Next Generation	3					
		5					
Theoretical Overview on Higgs Physics							
2.1	00						
2.2	·	7					
	2.2.1 SM + Scalar	7					
	2.2.2 SM + Fermion	11					
	2.2.3 SM + Vector	15					
2.3		19					
	2.3.1 SM + Singlet Scalar	19					
	2.3.2 SM + Doublet Scalar	19					
	2.3.3 SM + Triplet Scalar	26					
\mathbf{Pro}	ospects for Higgs Measurements at the LHC	33					
3.1	The SM-like Higgs Boson at the LHC: Current Data and Global F	it 33					
	3.1.1 Mass and Couplings: General Discussions	33					
	3.1.2 Higgs Self-coupling Measurements	35					
	3.1.3 Spin and CP Measurements	42					
3.2	Exotic Decays of the SM-like Higgs Boson	52					
	3.2.1 Visible Decays	54					
	3.2.2 Semi-visible Decays	55					
	3.2.3 Invisible Decays	56					
3.3	Nonstandard Higgs Bosons	56					
	3.3.1 $Q_e = 0$ Nonstandard Higgs Bosons	56					
	3.3.2 $Q_e = 1$ Nonstandard Higgs Bosons	59					
	3.3.3 $Q_e = 2$ Nonstandard Higgs Bosons	60					
Hia	ggs Physics at the CEPC	61					
4.1							
1.1	4.1.1 Leading Higgs Production Channels at e^+e^- Colliders	62 62					
	4.1.2 Sub-leading Higgs Production Channels at e^+e^- Colliders	63					
4.2		64					
1.2	4.2.1 Measurements at $\sqrt{s} = 240 - 250 \text{ GeV}$	64					
	4.2.1 Measurements at $\sqrt{s} = 240 - 250 \text{ GeV}$ 4.2.2 Comparison with the Measurements with Higher Energy Ru						
	4.2.3 Indirect Measurements of the Higgs Self-coupling	68 68					
4.3		71					
	Measuring the OF Froperties of the 5M-fike Higgs Boson (1						

CEPC – Site Investigation Qinghungdao (秦皇岛) Good geological condition

- Base rock type: granite
- Base rock depth: 0.5 2 m
- Seismic intensity: no more than the level 7 (some damage to houses), 0.10g
- Earth vibration(RMS, nm):



	Zhangjiakou	Huailai	/ Qinhuangdao \	Tianjing	Huairou	
1~100hz	~12	~40	~1.9	~470	~60	
4~100hz	~7	~14	~0.8	~24		

Building the tunnel in granite will have the lowest cost

Y. F. Wang

CEPC – Site Investigation Qinghungdao (秦皇岛)

