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Hadron Collider Example: CMS & Formilab.

at Chicago

om m 2m im 4m 5m 6m /m

Key:

Muon
Electron

IJ- Charged Hadron (e.g. Pion)

g — — — - Neutral Hadron (e.g. Neutron) 1l

!l 2 ====- Photon “:

-~ il

ety Hame o

3

[« )N -

3 L

< 1l .
: (€

N 5 ll“"

l

N lIII
QO -

< racker
m S =
%: Electromagnetic //7 'é‘
ju, Calorimeter bt g
3
> Iron return yoke interspersed :: §
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—

B Large Vol (R > Tm, 3+1O layers), Heavy;

: ELF 2 95% (99%) n's (W's); fake ~ 1%

§ Fiductal accept: |yl < 2.6

; fracks down to pr & 150 MeV
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Hadron Collider Example: CMS & Formilab.

23-26 August, 2014

100 T<V Workshop, SLAC

R. Cavanaugh
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=
D Bamaey, CERN, Febriuuy 2004

Tracker:
Large Vol (R > Tm, 3+1O layers), Heavy;
ELF 2 95% (99%) n's (W's); fake ~ 1%
Fiducial accept: Iyl ¢ 2.6
fracks down to pr & 150 MeV

Solenod:
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Hadron Collider Example: CMS & Formilab.
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R. Cavanaugh
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Large Vol (R > Tm, 3+1O layers), Heavy;
ELF 2 95% (99%) n's (W's); fake ~ 1%
Fiducial accept: Iyl ¢ 2.6
fracks down to pr & 150 MeV

Solenod:
B-field = 3.8 T,
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Hadron Collider Example: CMS & Formilab.

23-26 August, 2014

100 T<V Workshop, SLAC

R. Cavanaugh
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D Bamaey, CERN, Febriuuy 2004

Tracker:
Large Vol (R > Tm, 3+1O layers), Heavy;
ELF 2 95% (99%) n's (W's); fake ~ 1%
Fiducial accept: Iyl ¢ 2.6
fracks down to pr & 150 MeV

Solenod:
B-field = 3.8 T,
s(p1)/pT = 0.5% + 15% p1 [T<V]
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Tracker: ECAL:
Large Vol (R > Tm, 3+TO layers), Heavy;
EFF ~ 95% (99%) n's (u's); Fake = 17%
Fiducial accept: Iyl ¢ 2.6
fracks dowwn to pT & 150 MeV
Solenod:
B-field = 3.8 T,
s(p1)/pT = 0.5% + 15% p1 [T<V]
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Tracker: ECAL:
Large Vol (R > Tm, 3+10 layers), Heavy; Segment: AnxAd = (0.0187F)% 1 depth
ELF 2 95% (99%) n's (W's); fake ~ 1%
Fiducial accept: Iyl ¢ 2.6
fracks dowwn to pT & 150 MeV
Solenod:
B-field = 3.8 T,
s(p1)/pT = 0.5% + 15% p1 [T<V]
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Large Vol (R > Tm, 3+10 layers), Heavy; Segment: AnxAd = (0.0187F)% 1 depth
ELF ~ 95% (99%) n's (W's); fake ~ 1% Fiducial accept: [yl ¢ 3.0
Fiducial accept: Iyl ¢ 2.6
fracks dowwn to pT & 150 MeV
Solenod:
B-field = 3.8 T,
s(p1)/pT = 0.5% + 15% p1 [T<V]
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Hadron Collider Example: CMS f,':eﬂl!fy'ﬁﬂs
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§ Fiducial accept: |yl < 2.6 Excellent resolution: 6 # 27%//ET
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Large Vol (R > Tm, 3+10 layers), Heavy;
ELF 2 95% (99%) n's (W's); fake ~ 1%
Fiducial accept: Iyl ¢ 2.6
fracks dowwn to pT & 150 MeV
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B-field = 3.8 T,
s(p1)/pT = 0.5% + 15% p1 [T<V]

4m 5m 6m /m

Iron return yoke interspersed
with Muon chambers

D Bamaey, CERN, Febriwuy 2004

ECAL:
Segment: AnxAd = (0.0187F)% 1 depth
Fiducial accept: [yl ¢ 3.0
Excellent resolution: ¢ # 2%/ E
HCAL:
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Large Vol (R > Tm, 3+TO (ayers), Heavy;
ELF ~ 95% (99%) n's (W's); fake ~ 1%
Fiducial accept: Iyl ¢ 2.6
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s(p1)/pT = 0.5% + 15% p1 [T<V]
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J(PT)/PT = 0.5% + 15% p1 [T<V] Low Resolution: ¢ &~ 12056/ ET

23



2% Fermilab

Example: Devil 15 1n the Details! UIC Frea

gh 100 TeV Workshop, SCLAC  23-26 August, 2014

R. Cavanau

24
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Devil 15 1 the Detarls! serermilab

‘-Trackiwg played a cantral role tn both ALEPH
and CMS Particle Flow Algorithms. Buft...

ALEPH Tracker mostly empty

R. Cavanaugh 100 TV Workshop, SLAC  23-26 August, 2014
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% Tracking played a central role tn both ALEPH 7

< | and CMS Particle Flow Algorithms, But... 150;

2| ALEPH Tracker mostly empty 1::

S| CMS Tracker mostly full i

S| CMS: 207% of all hadrons undergo a nuclear 0

S| tnteraction wnside Fracker volume 100,

i lnitial tracking step: ¢ ~# 857%; £ & 207 150
after working hard: ¢ # 95%; £~ 17 0 S A0 00 s o s
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Example: Devil 15 tn the Details! serermilab

% Tracking played a central role tn both ALEPH 7

< | and CMS Particle Flow Algorithms, But... 150;

2| ALEPH Tracker mostly empty 1::

S| CMS Tracker mostly full i

S| CMS: 207% of all hadrons undergo a nuclear 0

S| tnteraction wnside Fracker volume 100,

i lnitial tracking step: ¢ ~# 857%; £ & 207 150
after working hard: ¢ # 95%; £~ 17 0 S A0 00 s o s

(must then link secondaries to calo clusters, fo avoid double counting)
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...as a cost-effective strategy...
1s very dependent on the detector design!
CDF/DO design's were not suitable for PF (satisfd ouly part criteria)
ALEPH, CMS used PF (absolutely critical For jets, MET, pile-up, <tc)
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r .

CMS is radically different from detectors

_ _ of the previous generations
High Interaction Rate

pp interaction rate 1 billion interactions/s

Data can be recorded for only ~102 out of 40 million crossings/sec
Level-1 trigger decision takes ~2-3 us

= electronics need to store data locally (pipelining)

Large Particle Multiplicity Slide taken

From J. Virdee

PRI R——

~ <20> superposed events in each crossing
~ 1000 tracks stream into the detector every 25 ns
need highly granular detectors with good time resolution for low occupancy

= large number of channels (~ 100 M ch) ,
Transparency from the |
High Radiation Levels early 90’s

= radiation hard (tolerant) detectors and electronics

SRR — R A

B
We are now asking the same questions for 100 TeV...
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F Earmi
2esigning the LHC Experiments serermilab

at Chicago

‘

Very good muon identification and momentum

measurement
Trigger efficiently and measure sign of TeV muons dp/p < 10% ‘}

High energy resolution electromagnetic calorimetry
~0.5% @ E;~ 50 GeV

Powerful inner tracking systems

Momentum resolution a factor 10 better than at LEP
Slide taken

rom J. Virdee

Hermetic calorimetry

Good missing E; resolution  Trausparency from the ‘f
L early 90's
(Affordable detector)

T aEese— —

A

We are now asking the same questions for 100 TeV...
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1. T =>R’~"Zm
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R
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LHC 8 TeV: CM B-field ~ 4T =>R & Tm
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needs a large, power

LEP 200 GeV; A&‘EPH B-fileld # 1.56T

Solenord 1nside

LHC | |
Solenotd oufsid

VLHC 100 TeV;

Solenotd tnside

ln addition fo many layers of precise posifion measurements, one
Y /
ul magnet
=Sk & 2m — s
CAL bore # 5m E\S‘:
: ~
8 TeV, CM B-field # ¢T =R~ Tm 5>
e HCALbore % Lm
B-field # 4T => KR # 3m
HC.AL? bor.e AV 8}4,‘? (For same B, R scales with +/€E)
) ) (See Todesco)
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The LHC has taught us wot to under-design the detectors
Don't underestimate the physics potential

Don't underestimate what you can ultimately do with the
detectors...even within o(cf?:cu(f‘ Financial constrants.
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See Sanjay Padhi's Talk at Betjing & Formilab.
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R. Cavanaugh

. Muon detector

at Chicago

ﬁ

Parametrized detector for 100 TeV proton collider (baseline)

. Large Solenoid + return yoke: Magnetic Field: 5T, 24m long and 5m radius

. Central Tracker (including pixel detector)

- Acceptance within |n| <4
- Momentum resolution o¢/pr ~ 1.5 x 10~* @ 0.005

- Efficiencies similar (not same) to CMS Phase-II ECFA studies

. EM Calorimeter (PbWO4) o/FE = 2.0%/@ ® 0.5%
. Hadronic Calorimeter o/E = 50%/VE @ 3%

. Forward Calorimeter (needed for VBF and other studies) up to |n|~6

o/E = 100%/VE @ 5%

- Acceptance within |n| <4

- Momentum resolution o /pr ~ 1%@100 GeV — 10%@10s TeV

- Efficiencies similar (not same) as CMS Phase-II ECFA studies

24™ Feb. 2014 “1* CFHEP Symposium on circular colliders” 20 Sanjay Padhi
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