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Machine Parameters

Machine Parameters are not very defined yet

Consider two main cases:
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Triggering Purposes Penn
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Hardware = level-1 (L)
Goal: Reduce data volume extracted from front-end chips

eFundamental difference between inner detector (tracker) and
outer detectors (calorimeter and muons)

*Tracker readout is necessarily in the tracker volume for a 411
detector

eContributions to tracker material

* Tracker plays a big role in LI discussion
*Outer detector readout is ~external to tracking volume

e Assume full beam crossing rate readout and use in LI

Software = high-level trigger (HLT)
Goal: Reduce stored data volume

*PC-based with software
*Expect hardware to keep up with industry = Moore’s Law?
*Expect affordable storage to scale with Moore’s Law?
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The Landscape @P@Dﬂ
109 LI'-;C LI;IC HE ?HC
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VLHC

Minbias ~140 mb

~|70 per crossing

Trigger Backgrounds
bb 150 MHz

~6 per crossing

~| per crossing w/ lepton
3 Jets pt > 50 GeV 25 MHz
E E ~| per crossing
3 - g Electroweak Physics
10" : - , o 107
10-551 ] i L | lh!CFMl+HigquU(opelan§trqteiy 3
10

107 10°  Top ~30 mb
\s [TeV] ~1500 Hz

Moore’s Law easily accommodates saving all the electroweak
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Moore’s Law
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Emperical law (self-fulfulling?)
May not continue (physical limits, change in market factors,...)

Transistors in CPU Storage

Microprocessor Transistor Counts 1971-2011 & Moore’s Law
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HLT and Moore’s Law

HLT Output Rate (scales like storage)

*Run2(2015) HLT outputs expected to be | KHz

* |00+ KHz probably no problem in 2040
*Assume HLT output rate is not an issue

HLT Input Rate (scales like CPU+networking)
*HL-LHC rates expected to be ~200 KHz to | MHz
*Detector readout limited anyway
*|nput rates of order the beam-crossing rates
probably achievable

Probably don’t need to worry about HLT
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Ny 40
What do we want to trigger on? PGI]II

Easy stuff... core high pt program
*Very high prtleptons (incl T), photons, jets, and met
*Hadronic SUSY with MET (with or without MET), Z’,WW
scattering, anomalous TGCs/QGCs, running of couplings

Pretty easy... single leptons
eprecision/rare Higgs, top
*Many HH channels
*Much of electroweak SUSY

Challenges...
*HH to bbTT *Exotics (monopoles, long lived
°H to Zy hidden valley)
*Monojets (+X) *Displaces Vertices
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Ny 40
What do we want to trigger on? Penn
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*Very high prtleptons (incl T), photons, jets, and met
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Challenges: HH to bbTT

Theorist analysis (ignores faflfl?s)

& Penn
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bbr7 bbr v,y ZH S/B S/vB
Cross section NLO [fb] 2.47 2.99 x 10*  8.17x10° 246x 10" 6.48x107° 6.93x 107!
Reconstructed Higgs from 7s 209x107' 835 x 10" 1.58x10%2 5.70x107' 863x107% 7.36x 10!
Reconstructed Higgs from bs 146 x 107! 6.34x 107! 143x10' 3.75x107%2 90.75x 1073 2.07
Cut on Myy 1.30 x 107! 1.37x 10! 1.74 1.26 x 1072  6.88 x 1072 5.18
Cut on Pr g 1.10x 107! 7.80x 1072 7.17x107' 1.15x107% 1.36x 107! 6.71
With 112.5 GeV < M.. < 137.5GeV 1.10x107' 341x1072 3.76x10°! 3.15x107% 267x 10! 9.37

Table 9: Cross section values of the of HH signal and the various backgrounds expected at
the LHC at /s = 14 TeV, the signal to background ratio S/B and the significance S/ VB

for [L£ =3000 fo=! in the bbr7 channel after applying the cuts discussed in the text.

J. Baglio, A. Djouadi, R. Grober, M.M. Muhlleitner, J. Quevillon and M. Spira, arXiv:1212.5581v2

Potential trigger objects

o2 b-jets,pT > 30 GeV (probably not really possible offline)

2 T,pT > 30 GeV

b and T are both difficult without tracking

If you can’t ensure that the objects came from the same vertex, this is

just two dijets collisions
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Challenges: Monojets @PGDD
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“l’VinO” Dark Matter “Higgsino” Dark Matter

>>§0 —— Small Am(x* — o) & ——— Small Am(x* — xo)

>>§0 Small Am(xz — x &)

Possibly long-live Soft Leptons

000000000000000000
A7 = . . ~ O +
T T TTTTI T T T T TTTT \ /1 dccay]ng ]nto Xl 'J!_T[
10°8 S

(a) . . : .
Dlsappeal’l ng . Badly mismeasured in p, due to a wrong
10 combination of space-points
10710 1= 7 Tracks '
I i High-p, charged hadron
r v . . .
8 interacting with ID material
pa—
= Lepton failing to satisfy
1o-14 ] identification criteria due to
large bremsstrahlung or scattering
10-16 Ll 40 reconstructed track
0.1 05 1 5 10 .
true particle track
Ams  (GeV)
Chen, Drees and Gunion, hep-ph/9902309 Pixel SCT TRT

Distinctive offline signature; Need to trigger on moderate MET
High Xo mass could mean small cross-section
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Pile-up scaling issues @PGI]D

Multiobject triggers scale
badly with pile-up...

If pis the probability that a single collision produces object passing
a given threshold, then the trigger rate for that object is

Rate = puf

where f is the frequency of crossings and i is the number of collisions
per crossing

The rate for a coincidence of two such objects is approximately

1

Rate = 5 (pp)* f

l.e. it grows with the square of 11, and worse for more objects!!!
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Pile-up, MET, and tracking Penn
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CMS Preliminary 2012
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Potential uses of tracking in trigger

Object Id
*Electrons: track-shower matching
*Muons: pr measurement
* Taus: track counting and isolation
*Calo-isolation for highly boosted tops maybe difficult

Vertex confirmation: leptons (incl T) , jets
*Key for multiobject triggers
*Because of high coincidence rate at high pile-up

Missing Energy
*Calorimeter MET degraded with pile-up
*Need to match offline performance
* Association of MET to vertex

The big question is how much tracking is feasible to get into LI
This could also influence detector geometry and design
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Data Volumes Possible: Tracker

Data volume scales by ~ (cross-section)x(mu

UNIVERSITY of PENNSYLVANIA

tiplicity)x(rapidity coverage)

00 TeV/ 14 TeV

Cross-section

100 mb/70 mb = 1.4

Multiplicity

Rapidity Coverage

150 mb

(Advice: don’t use
google docs for
making plots)

100 mb

Cross Section

0 mb

50 mb

Pythia Cross Sections vs ALICE, and Extrapolations

OINEL @ 30 TeV:
Just under 100 mb
Say ~ 90 mb

oneL @ 100 TeV:
Just over 100 mb
Say ~ 105 mb

B INEL

B INEL>0
NSD

Bl SD

DD

B ALICE INEL

B ALICE SD

osp: a few mb larger than at 7 TeV
— |opp~ just over 10 mb

fromy Peter Skands (FCC workshop)

Elliot Lipeles

UNIVERSITY 0f PENNSYLVANIA

100 TeV Workshop, Apr 23,2014 13



Data Volumes Possible: Tracker
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Data volume scales by ~ (cross-section)x(multiplicity)x(rapidity coverage)

00 TeV/ 14 TeV

Cross-section

100 mb/ 70 mb = 1.4

Multiplicity 1.5
Rapidity Coverage
£ | | 100Tev
% | Extrapolation for inelastic pp events ~ /
2 ‘ _ | |
0.8xs%1 Charged particle multiplicity at
: 14TeV=5.4
ol 100TeV =8
| -> only about 1.5 times larger
1.54-0.096 In (s)+0.0155 In? (s)|  from Werner Riegler (FCC workshop)
| \'s [GeV] )
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Data Volumes Possible: Tracker @Penn

Data volume scales by ~ (cross-section)x(multiplicity)x(rapidity coverage)

100 TeV/ 14 TeV
Cross-section 100 mb/ 70 mb = 1.4
Multiplicity 1.5
Rapidity Coverage 5/2.5=72
18 m Expect a geometry

that extends farther
forward for tracking

acceptance ~ [N|<5

| cM Cal
I

=2.7
jal FlelG _
—
ll mt 1D Cavity Forward I |
1omt cavity
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Ny 40
Data Volumes Possible: Tracker Penn

Data volume scales by ~ (cross-section)x(multiplicity)x

100 TeV/ 14 TeV

Cross-section

100 mb/ 70 mb = 1.4

Multiplicity

1.5

Rapidity Coverage

5/2.5=2

HL-LHC plans

*ATLAS ~ 250 KHz readout (may be increased)

*CMS 0.5-1.0 MHz readout
Data Volume scales by ~2-4

*Not so clear eta coverage counts (just more links)
*Forward eta region will have a much higher track density, but
also has better access for services

Reading out at 40 MHz (or 200 M-

z) requires increased readout of

(Data Volume factor)x(Readout freg

uency ratio) = ~80-320 increase

...ahd of course we don’t want more material!
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Future links %PGDD

Current (rad hard)
~ 10 Gbit/sec (“upgraded GBT", 65 nm)

Multilevel (should be rad hard)
~ scale by 2-4

Industry, Multiwave length (rad hard???)
~ scale by order 100+

Unclear whether full tracker readout will be possible
Depends on rad hard link development
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miR4n
Options for tracking in the LI Penn

No LI:

*Full tracker readout at 40 MHz or 200 MHz
*Requires large bandwidth ... already discussed

Tracking in the trigger
Rol-based = regional data filtering
*Needs larger latency (two-steps)
Self-seeded = prfiltering
*Needs special tracker geometry
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Buffering...

If you don’t do full tracking readout you need to buffer
to an extended time...

Latency Buffer Size
CMS HL-LHC 10-20 ps 400-800
ATLAS HL-LHC ~6 Us ~240
25 ns readout Similar numbers to HL-LHC
5 ns readout HL-LHC x 5 ~= 2000-4000

Significant latencies are not so far from what is achievable
today even for 5 ns
ofeature size will likely decrease, although small feature
chip production can be expensive
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“‘Unseeded’/Doublet Method CMS i
Lowp..: Highp.: .
hits se}aarated hits cloge actlvely
in ¢ in ¢ pursuing this
for HL-LHC

Sensors on either
side of stave/module

= ;

Low p Ttrack — <— Highp Ttrack

o

Need to connect pairs of sensors <«— Beam line v

Called “Intelligent” tracking
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Reducing the data flow: Region method @Penn

UNIVERSITY of PENNSYLVANIA
Two-level trigger: LO and L1
@ L0 uses calorimeter and muon system to define regions of interest

(Rols)
@ L1 extracts tracking for just Rols from detector front-ends
Muon Detectors Tile Calorimeter Liquid Argon Calorimeter

Read out da ai\ncgnes

LO Muon Seed
\\.

,_‘;
- ‘J __I .*; !!!’
X _‘
o= ==
.“ ',
Sudod |
Vipomum \g22 \
» "'é f‘r' )

ATLAS is
actively

-t pursuing this
/ for HL-LHC
L

LO Calorimeter
Seed
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Pattern Recognition @Penn
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Once we get the tracking data off the detector, we need to find tracks!

Pattern Recognition Use a 3D chip!

Associative Memory
/\

Layer 1
Ad /\ss

p ¥

)i i i

Pl

Layer 4
Address

Intrinsically 3D algorithm

$&x, ~ Address Match Memory
".:i"vi; o — /| Each tier
. h‘?‘"a. — ~ only 10 um thick
Sy Ted Liu, FNAL
&, | Majority Logi
‘ e, OTYEYE Faster, more patterns
[ '.‘_..(&“ .
B 3d fab technology likely to advance
CAM Cells T — @Y :
o oo shown) e d Need depends on LI tracking goals
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Comparing Methods
Doublet/"unseeded”/push method (pr filtering)

*Delivers: Higher-pT tracks for all crossings
*Good for lepton id, isolation
*Vertex association maybe difficult pt filtering in the inner tracker
layers is harder ... high B-field helps
*Good for missing energy!?
*What threshold in pt corresponds to what data reduction?
*What threshold in ptis sufficient for MET calculation?

Region of Interest/”seeded”/pull method (regional filtering)
eDelivers: Regional tracking (in some or all crossings)
e ATLAS HL-LHC version only looks in subset of events, but could
do regions at 40(200) MHz
*Good for lepton id, isolation, vertex association
*Good for missing energy!?
e Can do jet-vertex association, but not “soft-term” for the
unclustered energy

May even want to do both? What combined rejection can be acheived?
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Summary

Reasonably Moore’s law assumptions makes HLT probably
CPU and storage probably not a big issue

Tracking is the core question for 100 TeV
*Difficult channels examples: HH to bbTT, Monojets
*Rols or Self-seeded both good solutions for local high-pT
objects
*MET is probably the trickiest case

Full tracking at beam crossing rate technologies:
*Data extraction depends on rad hard link development
*Pattern recognition, new technologies look promising
*Correlating sensors at front-end = “Intelligent” tracking
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Back up: Data Volume
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From Werner Riegler @P@Dﬂ
Average Particle Momentum

14TeV
0.65_-1 |l |l 1'117'] 1 1 TTTYIT] L] L] I1ll'1§: . Oﬂ
- % ISR inel. . kS, ! ) il
06  * uaiNsD > ! // \
- A E735NSD 8 : /' 100TeV
055 ™ COFNsD g = 08 // e
UL ecmsnsD 1 & el
L - ] AT
> 05F 3 L
8 a - 04 [
~.0.45F .
SO : | | |
0.4F - “*I" 0.413-0.0171 In (s)+0.00143 In2 (s)
0L i o R AT
0.3 i 1 LAl llllll 1 L.l lllll L Ll lllll : lo lm "m 10: 105
10 102 10° 10* J3 [Ge
J5 [GeV] (GeV]
Average p, approx. 0.6GeV/c for 14 TeV and 0.8GeV/c at 100TeV
i.e. increase of 33%.
Bending in radius in 4T field:
R[m] =3.33 * p,[GeV/c] / B[T] =3.33 * 0.8/4 = 0.67m
-> Average particle will curl with 1.33m diameter inside the ID.
14/02/2014 W. Riegler, FCC kickoff
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From Werner Riegler @Penn

Inelastic pp crossection

120

100TeV

14TeV

Inelastic pp crossection, hand extrapolation from data up to 7 TeV:
= 80mb at 14TeV

= 100mb at 100TeV

- 25% increase

Elliot Lipeles

UNIVERSITY 0f PENNSYLVANIA 100 TeV Workshop, Apr 23,2014 27



From Werner Riegler @P@Dﬂ
Multiplicities
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X
< |
o . .
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[ q 14TeV=5.4
4 ‘ 100TeV =8
| / i -> only about 1.5 times larger
- // ‘
0 1 A ' 3
10 100 1000 10° 108
s [GeV]
14/02/2014 W. Riegler, FCC kickoff
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From Werner Riegler @P@Dﬂ

Assume a full pixel tracker:

e L=5x1034at 100TeV -> 5x10° pp collisions/second
* dN/dn =8 i.e. 80 tracks inside n £5
 Each track crosses 15 tracking stations

* |n each station 5 pixels are fired.
 Each hit is encoded in 5 Bytes

* Factor 5 for background + curling etc.

- 750 TByte/second into online system
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Back up: Moore’s Law
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Flops/Watt &' Penn
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Moore’s Law: CPU

Microprocessor Transistor Counts 1971-2011 & Moore’s Law

2,600,000,000

16-Core SPARC T3
Six-Core Core i7

Six-Core Xeon 7400 @10-Core Xeon Westmere-EX

UNIVERSITY of PENNSYLVANIA
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Moore’s Law Storage
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Hard drive Capacity

10000 g T T T T T I

Doubles every
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Back up:Track trigger filtering
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Filtering on pr:
unseeded, doublet, push model
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Reducing the data flow: Filtering on pr @PGDD

UNIVERSITY of PENNSYLVANIA
“Unseeded”/Doublet Method

Lopr: High P
hits separated hits close
in @ in ¢

Sensors on either
side of stave/module

\ ' y ) 5 mm

Low p Ttrack — =<— Highp Ttrack

=

<«— Beam line

v

Elliot Lipeles UNIVERSITY 0f PENNSYLVANIA 100 TeV Workshop, Apr 23,2014 36



Other sources of doublet coincidences @PGDD

UNIVERSITY of PENNSYLV

Close in ¢ but not from high P, tracks

Sensors on either
side of stavelmodule

A ~5 mm
Y
A
Lowp Ttrack — -<—— Photon with
with nuclear conversion ~1 m
interaction
<— Beam line |
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Doublets: The data reduction %PGI]D

wrnermu ~F Dy NSYLVANIA

o L‘:;pi;hﬁere Efficient of 20 GeV tracks
SsTatad | Filters data to 2%
104:__ N ) 3.00%
Number_— :... J' . \ l-‘l
okt 1 & d e | 2 2.50%
B Yy 20GeV : | Y
103j : : in+1GeV % 2.00%
E | [ —
- ; ép“aoeev - : g
7 1GeV: ! L, Z 1.50%
102; - -1 ~1 4
' gl Py c 1.00%
j"" o )
= o | | .3 O
2 0.50%
i)
O
0.00%
N | T I N » 05 1 15 2 25 3 35 4 45
-30 -20 -10 0 10 20 30 corrected phi difference cut in units of strip pitch

Corrected Phi Difference in Units of Strip Pitch

* Two-trigger layers at 0.8 m and 1.0 m have roughly double the readout
rate as an offline only design

* Total bandwidth for outer layer with doublet readout is comparable to
an inner layer without

*Must eliminate stereo angle for outer layers (impact not that serious)
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Communication between the two-sides @Penn

veedto | LHEE A

get from 1.2 m
here o T - Carbon fiber
to us cable facing

here ——

Carbon honeycomb

Readout IC's
or foam

Hybrids

Coolant tube structure

USA15

Cluster tags for 2
SCT module pairs

* Add wrap around cable with a L oL R LD S LD L L

NINNNINNsnnunnennm
\AAAAAAAAAAAAAAAAAAA

high-speed serial interconnect
for each 128 channels e o

* Add correlator chip for each AAAAAAAAAAAAAAAAAAAA

~ I O cm mOdUIe iNININININININININIGINIGINININININIDIn
INZ WS Z WA Z WS Z WS Z WS Z WS 7 W Z WS Z WY
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Filtering on Region:
Two-level trigger, Pull method
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Reducing the data flow: Region method @Penn

UNIVERSITY of PENNSYLVANIA

Two-level trigger: LO and L1
@ L0 uses calorimeter and muon system to define regions of interest

(Rols)
@ L1 extracts tracking for just Rols from detector front-ends
Muon Detectors Tile Calorimeter Liquid Argon Calorimeter

Read out dz aNnes \\\

LO Muon Seed
\\.

L P E
=
S

-
-
=Y
: 7

(1) \
- E 'n
— 1
5 - 4
& ™
Ml
g .
A -4
| ' .
- q{:{? &

L0 Calorimeter
Seed
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Two-buffer scheme

&

Front-end chips: At least strips and pixels

Penn

UNIVERSITY 0f PENNSYLVANIA

Buffer 1 Buffer 2
onlL0
on L1 -
-
on R3 L1 Trigger (L1)
Readout all data
A A

LO Trigger (LO) "Regional Readout
LO Calorimeter Move data from RequUssE (RB)
using only middle layer first buffer to Read subset of data

d buffer i from second buffer

fsrt:)cnczfenduc:i;;n to L1 Track system 44 L1 Track Finding
LO Muon |_,.| Topological
using RPC and TGC, 1™ |Global L0 | Rol Map = Correlator
and new forward —™ and Global L1

e L1 Calorimeter [~ "~~~ """ """ -
using full granularity
oo L1{Muon [Tt -
including MDT information
- S—— — S— — e
LO decision Distribution of LO Readout of Regions Track Finding Central L1
Determine Regions
-

Time
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Two-buffer scheme
In Front-End ASIC

UNIVERSITY of PENNSYLVANIA

Beam L0 Buffer LI Buffer
. Crossing

E Rate 40 MHE) LO Rate

: 500 KHz S

LI iAccept Rate
200 KHz
. »Event Builder/HLT

Regional Readout Request
4-10% of data . Off detector LI

Trigger Hardware

Bandwidth = LI Rate + LO Rate X% fraction of data in Rol
Nominal parameters:

LO Rate = 500 KHz, L1 Rate = 200 KHz, Rol fraction = 10%

LO Buffer length (in events) 128
Beam Crossingrate ~ 40MHz

L1 Buffer length (in events) 128
LO Rate ~ 500KHz

LO Latency =

~ 3.21u8

L1 Latency = ~ 2968
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Data Reduction from Regions

Consider cones in n — ¢ space

@ Typical cones size used for
iIsolation are
AR = +/A¢?2 + A2 =0.2-04
@ Fractions of tracking volume in a
coneof AR ris

mr?
(n range) x (¢ range)

@ Foraconeof AR < 0.2thisis
0.4%

@ This allows for a large number of
Rols and a safety margin to fit in
10% Rol request fraction

n |
@
®
I foommmeees
. @
-2.5 2.5
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Data Reduction from Regions

A tricky challenge

eBecause of beam
spot spread, Rol need
to be elongated along
beam direction

eLarge request rate
for central wafers in
inner pixel layers

& Penn

UNIVERSITY 0f PENNSYLVANIA

Module number in Z
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Fraction of Rols requesting a module (in %)
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