
Build Orchestration with worch

Brett Viren

Physics Department

November 13, 2013

Brett Viren (BNL) worch November 13, 2013 1 / 16

Contents

worch in a nutshell

configuration

feature methods

using

worch bundles

batteries included

near future plans

Brett Viren (BNL) worch November 13, 2013 2 / 16

worch in a nutshell

worch in a nutshell

worch is a metabuild system that orchestrates the running of native build
mechanisms. it consists of these layers:

configuration a simple, declarative configuration language specifying all
information required to build a package.

features Python methods translating configuration into tasks taking
well defined inputs and producing well defined outputs.

waf the waf engine to sort out the dependencies and execute the
tasks in a parallel manner.

Brett Viren (BNL) worch November 13, 2013 3 / 16

configuration

worch configuration overview

The configuration...

• partitions the software suite into groups of packages.

• sets the directory layout for intermediate and installed files.

• lists which feature methods are used to build a package.

• provides the values of variables required by the features

• sets per-package build and run time environment variables.

• variables be defined in terms of other package and system defined
variables.

• may define external worch modules for loading.

Brett Viren (BNL) worch November 13, 2013 4 / 16

configuration

The “start” and “keytype” sections

The parsing starts at the start section and builds up a hierarchy of information by
interpreting any keys found in the keytype section as lists of sections of the given type.

this is a comment
[start]
g roups = buildtools , compiler , externals , art , larsoft
includes = default . cfg , externals . cfg , art . cfg , lbne . cfg
download_dir = downloads
. . .
[group buildtools]
packages = cmake , . . .
. . .
[package cmake]
version = . . .
. . .
[keytype]
g roups = group
packages = package

Any items defined at high levels are copied down to the leafs of the hierarchy. Eg,
download dir is available to consumers of the cmake package information.

Brett Viren (BNL) worch November 13, 2013 5 / 16

configuration

group sections

• List a number of packages in the group

• A place to define variables to apply to all packages in the group.
• A completely built in a serial fashion

→ packages within a group are built in parallel

[group gnuprograms]
packages = hello , bc
source_archive = { package}−{ v e r s i o n } . tar . gz
s o u r c e u r l = http : // ftp . gnu . org/gnu/{ package }/{ source_archive}
unpack ed t a r g e t = configure

[package hello]
v e r s i o n = 2 .8

Shows example of using variable reference and defining variables that may apply to all

packages in the group, exploiting symmetry that exists among GNU packages.

Brett Viren (BNL) worch November 13, 2013 6 / 16

configuration

package sections

• List the features that implement the installation
• List any variables expected by the features

• Provide any not given higher up (in group or start).
• Override any defaults given higher up with needed specialization.

[package hello]
version = 2.8
f e a t u r e s = tarball , autoconf , makemake
build_target = src/hello
install_target = bin/hello

Brett Viren (BNL) worch November 13, 2013 7 / 16

configuration

dependencies

Three types of dependencies can be expressed:

file declaring fail to be output by one step and input by another

explicit any step can be declared dependent on another by name
(“package step” naming convention)

environment any package may declare its dependency on another
packages exported environment variables. These will be
defined in the calling environment for all steps

[package foo]
f e a t u r e s = tarball , autoconf
may be used as output to tarball , input to autoconf
unpacked_target = configure
depends = prepare : bar_install
env i ronment = group : compiler , package : cmake

Brett Viren (BNL) worch November 13, 2013 8 / 16

configuration

more dependencies

worch enforces a standard set of file-based dependencies which may be
used to glue features together. Every successful package step produces a
package step file.

my_unpack = tgen . control_node (’unpack’)
root_install = tgen . control_node (’install’ , ’root’)

These can be used, for example, to make sure a package is only compiled
after it’s been unpacked and ROOT has been installed.
For steps defined all in one feature, the “control node” need not be used.

Brett Viren (BNL) worch November 13, 2013 9 / 16

configuration

external methods

worch comes with batteries-included for common native build mechanisms.
Support for novel ones can be added as waf tools.

[package foo]
features = tarball , f o o i n s t
t o o l s = foo . tool , bar . tool

All python modules listed by tools will be loaded using waf’s tool load()
mechanism. This may be used to define novel features. Here foo.tool
may provide feature fooinst.

Brett Viren (BNL) worch November 13, 2013 10 / 16

feature methods

feature methods

Duties

• define defaults configuration values

• produce waf tasks via a worch-provided interface

Extension on waf features.

import orch . features
orch . features . register_defaults (

"fooinst" , foo_dir = "{PREFIX}/foo" ,)
from waflib . TaskGen import feature
@feature (’ modulesfile ’)
def feature_modulesfile (tgen) :

tgen . step ("foostep1" , rule= . . . , source = . . .)
tgen . step ("foostep2" , rule= . . . , target = . . .)

• May define default values for configuration items or use existing ones.

• The tgen is an augmented waf TaskGen, mostly the step() method
is used.

Brett Viren (BNL) worch November 13, 2013 11 / 16

using

using worch for an installation

$ waf --prefix=/path/to/install \

--orch-config=suite.cfg \

configure build install

worch comes with a copy of waf.

Brett Viren (BNL) worch November 13, 2013 12 / 16

worch bundles

worch bundles

A mechanism to pack waf, worch Python modules, external feature
methods, and the suite’s configuration files into a self-extracting Python
program.
Cartoon calling:

$ wget http://some.server.gov/lbne-software-rX.Y.Z

$./lbne-software-rX.Y.Z configure build install

Brett Viren (BNL) worch November 13, 2013 13 / 16

batteries included

Batteries included (so far)

tarball download tar/zip, unpack

vcs same but for git/hg/svn/cvs

patch download and apply a patch file

autoconf run Autoconf’s configure script to prepare the source

cmake same but run cmake

makemake make/make install doublet

modulesfile produce a http://modules.sf.net modules file for
environment setup

upspkg same but for UPS

pypackage install a Python package via its setup.py

special some special-purpose package installation (tbb, pythia6)

Note, some of these “batteries” have been turned into external
tools/features.

Brett Viren (BNL) worch November 13, 2013 14 / 16

http://modules.sf.net

near future plans

Near future plans for worch

• Merge the external tool/features support into master

• Produce external tool/features to implement Lynn’s high-level
from-source instructions

• Add a feature to allow bulk of configuration and external tools to be
specified by URL and downloaded (to assist with release management)

• Continue to work with Sebastien Binet with ATLAS adoption of
worch and investigate his hwaf tool to simplify user-level activities.

Brett Viren (BNL) worch November 13, 2013 15 / 16

near future plans

worch development at:

https://github.com/brettviren/worch

Brett Viren (BNL) worch November 13, 2013 16 / 16

https://github.com/brettviren/worch

	worch in a nutshell
	configuration
	feature methods
	using
	worch bundles
	batteries included
	near future plans

