
ATLAS Event Storage News

• 64bit integer support in TTreeFormula,
TLeafs and TTreeIndex

Marcin Nowak (BNL)

• Fixes for TTreePerfStats
Peter Van Gemmeren (ANL)

• New event data storage format: xAOD
Attila Krasznahorkay

 ROOT i/O Wrokshop 6/12/2013 1

TTreeIndex 64bit

• ATLAS is planning to extend the current data navigation model based on
POOL Tokens with navigation based on Run+Event number (which are
going to be 64bit values)

– Why: POOL Tokens are generic object references that one needs to keep somewhere (TAG
database)

– No support for object relocation (file merging)

• We want to use TTreeIndex to locate events in a file
• TTreeIndex is a composite index built from two 31bit integer values

(calculated from each TTree row using two TTreeFormulas) and then
glued together into one 64bit int – based index

• ATLAS is contributring manpower to improve handling of 64bit ints in
ROOT

• Current status of work: 64bit version of TTreeIndex is implemented
– using 2 separate 64bit vectors for the 2 index values (not using 128bit ints)
– code in a private ROOT branch (will be moved to github)
– full schema evolution support needs to be added (soon)

ROOT i/O Wrokshop 6/12/2013 2 Marcin Nowak

TTreeFormula and 64bit ints

• T[Tree]Formula evaluates expressions using floating point
numbers (64bit)
– 64bit floating point format can not store 64bit integers!

• It works up to ~62bits, errors are rare and unexpected

• ATLAS needs 64bit support for Event Index and for 64bit
words used to store trigger decision
– ATLAS TAG utilities are using a fixed version of TTreeFormula based on

long double since for some time

• Proposal to use long double type in ROOT was not accepted
(performance reasons) – decided to implement template
specializations for double, long double and Int64

template<typename T> T TTreeFormula::EvalInstance()

ROOT i/O Wrokshop 6/12/2013 3 Marcin Nowak

TLeaf and 64bit

• Fixing TTreeFormula only helps with evaluation of the
expression, but data is read from TTree using the
common GetValue() API that already converts to double
– Solution: template specialization GetTypedValue<T>()

– Required chagnes in:
• Tleaf, TLeaf specializations, TLeafElement, TBranchElement,

TStreamerInfo, TLeafInfo and about 15 TLeafInfo subclasses

• Status: changes implemented and in testing, awaiting
evaluation
– We hope to have the changes accepted soon for a dev release

ROOT i/O Wrokshop 6/12/2013 4 Marcin Nowak

Fixes for TTreePerfStats

• TTreePerfStat is a very helpful tool to monitor
TTree performance.

• Unfortunately it is not quite correct:
– Monitors I/O performance on TFile level, assuming

that all reads are for a single TTree.

• Two step approach to improvement:
1. Make TTreePerfStats work correctly for single TTree.

• ROOT patch has been provided by ATLAS

2. Support multiple TTreePerfStats.
• Under development with limited effort resources…

ROOT i/O Wrokshop 6/12/2013 5 Peter van Gemmeren

The xAOD File Format

• ATLAS is working on a new file format for the output of its
reconstruction. The new formats needs to:
– Provide the ability to save the same information as the AODs

used in Run 1
– Provide the same flexibility with file content manipulation as the

flat ntuples that we used for practically all physics analyses in
Run 1

– Provide support for (auto-)vectorization in the reconstruction
software

• Done by creating separate data storage classes (auxiliary
classes) and “interface classes” that provide a user-friendly
interface to the information
– The auxiliary classes are SoA (StructOfArray), while the interface

objects provide access to the information in an AoS
(ArrayOfStruct) manner

ROOT i/O Wrokshop 6/12/2013 6 Attila Krasznahorkay

xAOD Writing/Reading

• Want to use these files up to a late stage in analysis
– Require good performance for reading a small portion of the event

data
• Done by selectively & lazily reading the auxiliary information from the input

– For this, we have to write the auxiliary properties either as individual
simple (std::vector<T>) branches, or as a SoA object with a split level
of 1

• In both cases the created TTree may have O(10k) branches

• Handling this many branches in analysis is “doable”, as rest of the
analysis job doesn’t use much memory usually.
– However, need to be able to write this many branches with reasonable

memory requirements in reconstruction type jobs as well.
• Current TTreeCache infrastructure seems to be adequate for serving

such jobs
– While not widely used, did use TTreeCache in some analysis jobs that

ran on O(10k) branches.

ROOT i/O Wrokshop 6/12/2013 7 Attila Krasznahorkay

	ATLAS Event Storage News
	TTreeIndex 64bit
	TTreeFormula and 64bit ints
	TLeaf and 64bit
	Fixes for TTreePerfStats
	The xAOD File Format
	xAOD Writing/Reading

