
Data & Storage Services

CERN IT Department
CH-1211 Geneva 23

Switzerland
www.cern.ch/it

DSS

LZ4HC COMPRESSION
for ROOT and 

IO Baseline Evaluation

Andreas-Joachim Peters
IT-DSS-TD

=    compression   x            speed           x            size

ROOT IO Workshop - 6.12.2013

4Friday, December 6, 13



CERN IT Department
CH-1211 Geneva 23

Switzerland
www.cern.ch/it

Internet
Services

DSS Contents

•Overview of Compression Algorithms
• baseline for expectation

•Implementation
• format for multithreaded encoding and single-threaded decoding
• implementation in ROOT

•Results
•benchmarks for various Tree’s
•IO baseline measurement

ROOT LZ4 COMPRESSION
5Friday, December 6, 13



Data & 
Storage 
Services

Comparison Compression Algorithms

ROOT LZ4 COMPRESSION

Alogrithm Compr.
Ratio

Encoding
Speed [MB/s]

Decoding
Speed [MB/s]

LZ4 2.084 422 1820

Snappy 2.091 323 1070

ZLIB 1.2.8 
level=1 2.730 65 280

ZLIB 1.2.8 
level=6 3.099 21 300

LZ4HC 2.720 25 2080

Core i5-3340M @2.7GHz, using the Open-Source Benchmark by m^2 (v0.14.2) compiled with GCC v4.6.1

Looking at this table: LZ4HC looks very interesting for workflows where 
n(read)>n(write)... but the story is not at it’s end ...

6Friday, December 6, 13



Comparions Compression Algorithms
Data & 
Storage 
Services

ROOT IO Performance Composition

Decompression Event 
Assembly

Event
User Analysis

Loca/Remote
IO

[ read ] [ unzip ] TTree::GetEntry(i) {
  for ( branches ) 
  {
   TBranch::GetEntry()
  }
}

Select
Compute
Draw

uncached
0-500 MB/s

cached
2 GB/s

25-300 MB/s
uncompressed: 

5-2200 MB/s anything

async IO
vector IO

readahead
parallel 
unzip

Parallelization
Optimization

TTreeCache
Async Prefetch

various bottlenecks

ROOT LZ4 COMPRESSION
7Friday, December 6, 13



Overview of Compr. Alg.
Data & 
Storage 
Services

ROOT LZ4 COMPRESSION

Simple approach for multithreaded
encoding ...

Buffer

ZLIB/LZMA 
Compression in ROOT

Compr.
Buffer

R__zip R__unzip

size: [bytes .. MB]
defined by basket size

ratio: [1:1 .. 1:10]
defined by contents

LZ4HC decoding is extremely fast [2 GB/s] and does not need 
parallelism while encoding is slow => try parallel approach with low 
code change impact in ROOT on lowest level (inside R__zip) ...

Buffer

LZ4(HC)
Compression in ROOT

adaptive
chunking

Encoding Thread pool
(8 threads)

memmove

8Friday, December 6, 13



Overview of Compr. Alg.
Data & 
Storage 
Services

ROOT LZ4 COMPRESSION

LZ4HC compressed buffer format

Header

BODY

‘X’ 8bit
‘Y’ 8bit

<chunktype> 8bit
enc size 24bit
dec. size 24bit

9 bytes

Chunk 1
enc size 24 bit

Chunk 1
BODY

Chunk 2
enc size 24 bit

Chunk 2
BODY

...

3 bytes

ID Size
1 64k
2 128k
3 256k
4 512k
5 1M

<chunktype>

identical to ZLIB/LZMA

9Friday, December 6, 13



Overview of Compr. Alg.
Data & 
Storage 
Services

ROOT LZ4 COMPRESSION

LZ4HC ROOT Implementation

ROOT compression is part of libCore which has no access to 
threading. 
First prototype used C++11 threads, now using native ROOT 
threads + semaphores.

Single threaded encoding and decoding is implemented in class 
ZipLZ4 under root/core/lz4/in libCore.

Multi threaded encoding is implemented in class ZipLZ4mt in 
root/io/io/src/ installing a singleton pointer on load starting 
eight worker threads. 
[ the construction and destruction of the thread pool is currently tied to libRIO - to be reviewed ]

Compression code is ~2.5k lines in C (6 files) from 
https://code.google.com/p/lz4/        [LZ4 r108]

Javascript implementation available 
https://github.com/pierrec/node-lz4

10Friday, December 6, 13



Overview of Compr. Alg.
Data & 
Storage 
Services

ROOT LZ4 COMPRESSION

LZ4HC ROOT Benchmarks

Event.root  eventexe 100000 1

Compressor Level Ratio Compression
Speed

Decompression 
Speed

GZIP 1
2.15 L=1
2.27 L=6
2.35 L=9

21
10
1.9

88

LZ4 >1 1.68 52 178

LZ4HC 1 2.02 12 188

LZ4HC (mt) 1 2.02 32 188

LZMA 1 2.71 7 24

uncompressed 0 1.0 57 200

Basket-Size: 50kb - 2.5M ; 21 Leaves

Reference

11Friday, December 6, 13



Overview of Compr. Alg.
Data & 
Storage 
Services

ROOT LZ4 COMPRESSION

LZ4HC ROOT Benchmarks

NTUPLE
File
Size
[b]

Default
Compr.

Type

Default
Compr.
Ratio 

Branch
/Leafs #Events Default

Read (s)
LZ4HC
Read 

[s]

LZ4HC
IO rate
[MB/s]

Size
change

CPU
usage

change

IO 
rate

change

ATLAS
SUSY

4.5G ZLIB 3.84 7K 55K 496s 445s 11.8 +17,0% -10.5% +28%

10% 138s 64s 82.2 -53.7% +583%

ATLAS
HIGGS

856M ZLIB 2.47 5.8K 12K 62s 54s 17.8 +11,4% -13% +12%

10% 22s 8.8s 110 -60% +130%

ALICE 230M ZLIB 5.4 423 657 12.4s 9.1s 26.2 +10% -26% +45%

CMS
Higgs Events

2.5 GB ZLIB 5.04 305 1.4M 213s L=9
229s L=1 229s 13.3 +20 %  L=9

+-0 % L=1
+4%
+0%

+13%
+0%

CMS
PHOTON

3 GB ZLIB 4.21 5k 14K 570s +21% N.N N.N

CMS 
USER 

NTUPLE
1.8G ZLIB 2.6 14 81M 110s 90s 24 +22% -18% +50%

LHCB 1.5G LZMA 3.0 76 232k 264s
190s zlib

119s 19.1 +50%
+5% zlib

-55%
-37% zlib

+230%
+71%

For the CMS Photon file I missed class libraries to read it after conversion. Running CloneTree resulted in the ATLAS cases 
in 5-10% larger files using ZIP default compression [basket size optimization?] CloneTree is incredibly slow!!!

12Friday, December 6, 13



Overview of Compr. Alg.
Data & 
Storage 
Services

LZ4HC ROOT Benchmarks

LZ4HC compressed trees are not always faster to read than 
ZLIB. If overall network IO is a bottleneck LZ4HC is already ruled 
out.

It it not completely transparent to understand the different 
behavior of LZ4HC and ZLIB for the tested tree’s: the usability of 
LZ4HC depends strong on the input data. 

In general it would be good to have a fast conversion function in 
ROOT re-compressing baskets (in parallel) with a different 
algorithm e.g. it takes 20 minutes to convert the Higgs Event tree 
(2.5 MB/s).

ROOT should implement a fast benchmark probe function 
showing the performance results for a subset of events in a given 
tree.

13Friday, December 6, 13



Comparions Compression Algorithms
Data & 
Storage 
Services

ROOT IO Baseline 
Xeon 2.27GHz 8-core 16GB DDR3

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

128 512 1k 4k 32k 128k 512k 1M 4M 16M 64M 512M

Event Class (no split mode) with one binary blob member (size is Y axis) basketsize=64k

M
B/

s

Event Size

No ROOT ROOT no Compr. ROOT LZ4

0%

15%

30%

45%

60%

128 512 1k 4k 32k 128k 512k 1M 4M 16M 64M

   
Pe

rfo
rm

an
ce

 re
l. 

to
 n

on
-R

O
O

T 
IO

- ROOT no comp. ROOT LZ4

No-ROOT:
open (file)
while(read(ev-size))
close(file)

Events:
Events are filled 
with random 
bytes and 
compress 1:1.45

1 x memcpy(ev-size) = 50%

~2 x memcpy(ev-size) = 25%

read sys-call 
limited

Certainly one would read 
at least 32k and not small
single  events with a single 
read call!

14Friday, December 6, 13



Comparions Compression Algorithms
Data & 
Storage 
Services

IO Efficiency for example trees 
using default compression

0

25

50

75

100

15
21

42

54

34
38

100

100% CPU Read IO

M
B/

s 
un

co
m

pr
es

se
d 

ev
en

t d
at

a 
pe

r C
PU

 s
ec

on
d

0

500

1000

1500

2000

Event Size [kb] 20

900

0.069

180
300

1900

ALICE AOD ATLAS SUSY ATLAS HIGGS CMS HIGGS CMS USER CMS PHOTON LHCB MDST

0

2.5

5

7.5

10

non-ROOT norm. LZ4 norm.

1.5
0.5

2.1

0.7

4.2

1.4

4.2

1.4

3.5

1.1

3.8

1.2

10

3.3

CPU Eff. of IO compared to 64MB read size speed

% This is an area to invest more work. This inefficiency wastes CPU 
cycles to arrange data in memory not to analyze them => 
re-evaluate the cost of minimal data size and framework flexibility.

ROOT LZ4 COMPRESSION

LZMA!

15Friday, December 6, 13



Overview of Compr. Alg.
Data & 
Storage 
Services

ROOT LZ4 COMPRESSION

Summary

LZ4HC compression trades inferior compression for lower CPU usage. 

It seems to be a good choice in use cases with lower number of branches or 
partial event reads. 

Less compression and faster decompression results in higher bandwidth 
requirements to reach 100% CPU usage.

To gain from multithreaded LZ4HC encoding basket sizes must be at least of the 
order of several 64kb - otherwise multithreading does not result in faster 
compression.

It might be interesting to apply the multithreaded encoding & decoding to LZMA 
which gives the best compression at a low performance. It helps single client 
performance but certainly costs CPU.

With LZ4HC compression the inefficiency in the event assembly becomes more 
evident. This should be a focus of the future with the goal not just to parallelize it 
(using even more CPU) but to reduce the CPU needed to assemble events in 
memory (maybe never really convert them in C++ objects - just proxy).

 
16Friday, December 6, 13


