In-situ monitoring
of high doses of radiation

Paweł Knapkiewicz
Faculty of Microsystem Electronics and Photonics
Division of Microengineering and Photovoltaics

RESMM 2014
Wrocław, Poland, 13 May 2014
Motivation

Chernobyl (at left) and Fukushima (at right) nuclear power plants after nuclear accidents.

High radiation > 100 kGy doses in short term.

* International Nuclear Safety Center
Motivation

Scientific / Industry facility

Radiation level - low, but long-term dose high > 20 kGy.
High radiation doses "measurements" - state of art:

> 20 kGy **only non-direct measurements** by:

- **alanine dosimeters:**
 - range of measurement up to 1 MGy

- **photoluminescent dosimeters:**
 - range of measurement up to 1 MGy

- **thermoluminescent dosimeters:**
 - range of measurement up to 1 MGy

- **hydrogen pressure dosimeters:**
 - range of measurement up to 10 MGy
Non-direct measurement

absorbed dose above 20 kGy

radiation source

classic dosimeter(s)

radiation-proof container

transport to the laboratory
Non-direct measurement

- Classic dosimeter(s)
- Transport
- Laboratory
 - Reading + analysis = result (estimation of dose)

Result: several hours to months
Wanted: new method of measurements of high-doses of radiation above 20 kGy

Problem: no sensors
Hydrogen pressure dosimeter - principle of the work

principle using from 1950’s

high dose radiation

\[\text{transport} \quad \Delta p \quad \text{HDPE} \]

glass container with HDPE

- High Density Polyethylene (HDPE)

- \(H_2 \)

Laboratory

break the bottle

measurements by Bourdon gauge
Our goal

principle using from 1950’s

glass container with HDPE

V ~ 100 cm³

new MEMS sensor for continues measurements

HDPE

H₂ \(\Delta p \)

miniaturization

V ~ 10 mm³

www.memslab.pl
Our new MEMS sensor - principle

prior to irradiation

thin membrane

Si

\(p_0 \)

glass

HDPE

\(p_0 = \text{introductional pressure (after sealing)} \)
after irradiation

Irradiated HDPE degrades and releases atomic hydrogen

\[p_1 - p_0 = \Delta p = f \text{ (dose)} \]
Our new MEMS sensor - principle

Single membrane sensor

$p_1 < p_{\text{max}}$

proportional mode of detection possible

below maximal pressure/dose

deflection of membrane

"Cascade" membranes sensor

$p_2 > p_{\text{max}}$

membrane of known mechanical properties discriminates doses

destruction of membrane

over maximal pressure/dose
Technical realization
Single membrane proportional sensor

![Diagram of the technical realization of a single membrane proportional sensor](diagram.png)

- **Cross-section view**
 - Microchannel
 - Membrane
 - Sealing by anodic bonding under controlled pressure p_0

- **Planar view**
 - HDPE container
 - Membrane S_1

Dimensions:
- 1.1 mm glass
- 0.4 mm Si
- 1.1 mm HDPE
- 15 mm
- 9 mm HDPE container

Scheme not in scale
Technical realization
“Cascade” membranes threshold sensor

Planar view

Cross-section view

HDPE container S_1 S_2 S_3

Scheme not in scale

1.1 mm glass
0.4 mm Si
1.1 mm HDPE
Si

24 mm

9 mm
Fabrication - process

double-side deep wet etching in KOH 80°C, 10M KOH

first anodic bonding in N₂ 450°C, 1000 V

placing of solid HDPE pill

second anodic bonding in N₂ 300°C, 1200 V
MEMS sensors at a glance

Single membrane sensor

"Cascade" membranes sensor

container with HDPE

Several tens of sensors have been successfully fabricated.
Irradiation

- Linear accelerator: 6 MeV
- Beam spot: ~3 mm
- Sample
- Chuck-holder
- Total dose: $20 \text{ kGy} < x < 120 \text{ kGy}$
Results of irradiation

Single membrane proportional sensor

sensor before irradiation
sensor after irradiation

25 mm2 and 30 µm thick membrane – deflected @ 10 kGy dose

deflected membrane

Sensors have been fabricated in MEMS lab facilities at Wrocław University of Technology.

Sensors have been tested in National Center for Nuclear Research in Otwock / Świerk
Data processing toward sensor

![Graph showing the relationship between pressure [kPa], deflection of the membrane [μm], and dose of radiation [kGy].]
Results of irradiation

"Cascade" membranes threshold sensor

sensor before irradiation sensor after irradiation

25 mm² / 30 µm thick membrane – destroyed at 26.8 kGy dose
Data processing toward sensor

4 independent low dose sessions

- ■ model
- △ experiment

- dose of ionizing radiation [kGy]
- surface of the membrane [mm²]
Short interim summary:

- MEMS miniature sensors for detection of high doses of ionizing radiation have been fabricated and tested.
- Doses up to 120 kGy have been successfully detected.
- High radiation doses 10 – 120 kGy in situ detection by small MEMS sensor have been shown for the first time.
- “Cascade” membrane sensor as dose threshold sensor is ready-to-use!
Single membrane sensor - proportional operation mode

- Radiation source
- In situ sensor
- Remote detection
- Reading + result
- Safe area

Remote detection
Radar remote detection based on LAAS technology

Modification of EM coupling between resonator and silicon membrane
- High sensitivity to membrane displacement (Air gap: 1µm to 10µm)
Radar remote detection based on LAAS technology

Air gap (2, 3, 6, 8, 10, 30µm)

Q ≈ 10

Simulation

Silicon 400µm

≈ 1GHz /µm

Experiment

Silicon 400µm
Radar remote detection based on LAAS technology

Interrogation distance:
- 3 m (pressure sensor)
- 30m (Antenna loaded with impedance) → >> 30m expected
Radar remote detection based on CNRS-LAAS (Toulouse, France) technology

- RF probe access
- High resistivity Silicon (400µm thick)
- Pyrex
MEMS high-dose radiation sensor

DOSIMEMS Project „Passive, wireless MEMS dosimeter for the high radiation dose monitoring”, financed by the European Commission under the Seventh Framework Programme FP7, MNT-ERA.NET.

Responsible for development of the sensor technology
DOSIMEMS project - participants

- Poland
- France
Sensors of high doses of radiation – potential application

"Cascade" membranes threshold sensor

+ simple eye control

Single membrane proportional sensor

+ remote control

Radar

Optical
Sensors of high doses of radiation – potential application

Monitoring of high doses of radiation after the disaster in harsh environment.

- S - radiation sensor

- damaged reactor

- polluted area
Monitoring of high doses of radiation acting on the reactor covers – safety „caps”.

working reactors / industry facility
Sensors of high doses of radiation – potential application

Monitoring of doses coming from nuclear waste disposal.

leakages

nuclear waste disposal

ground

door
Sensors of high doses of radiation – potential application

High radiation coexist with another treats

- High temperature
- High electromagnetic / magnetic field
- Explosion risk
- Poisonous gases

Sensor and sensing head are:
- resistant against high temperature (up to 300 ºC)
- EX standard ready
- wireless
More information in papers

• M. Olszacki, M. Matusiak, I. Augustyniak, P. Knapkiewicz, J. Dziuban, P. Pons and E. Debourg, Measurement of the high gamma radiation dose using the MEMS based dosimeter and radiolisys effect,, 24th *Micromechanics and Microsystems Europe Conference*, September 1-4, 2013 Hanasaari Finland, p. 33-36,
Acknowledgments
MEMSlab Team

MEMSlab team of Faculty of Microsystem Electronics and Photonics of Wrocław University of Technology – picture taken in the 14th century Castle, Ryn, Poland