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Outline 

• IP and Machine-Induced Backgrounds and 
Radiation Loads 

• Protecting Detector and Collider Components 

• 50x50 TeV pp Collision Characteristics 

• Loads on Machine and Detector: FCC vs HL-LHC 

• Summary 



Introduction  

 The deleterious effects of background and 

radiation environment originated from a 

collider interaction point (IP) and from beam 

interactions with accelerator components are 

one of the key issues in interaction region 

(IR), machine-detector interface (MDI) and 

detector design and developments. 
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IP Backgrounds and Radiation Loads in IR 

Collision debris from IP are the major source (>99%) of 
background and radiation load in the detectors and IR 
components at nominal parameters with a well-tuned machine 
(Tevatron and LHC experience). Very challenging at a high-
luminosity multi-TeV collider. 

20x20 TeV 
pp-event in 
a CMS-like 
detector 
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Peak Radiation Loads In Detector 
MARS-calculated in 2002 
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100 

Peak values in collider 
detector scale with 
luminosity, with only 
weak dependence on √S 
 
Practically scale with 
energy in very forward 
region 
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Machine-Induced Backgrounds and 
Radiation Loads 

 Compared to the luminosity-driven backgrounds at the 
IP, machine-induced backgrounds (MIB) are less studied, 
their characteristics vary in a broader range, and – at a 
low luminosity – they can be a serious issue. The 
collimation system takes care of “slow” losses with a 
very high efficiency. But still four following components 
form backgrounds and radiation loads in IR and   
detector components: 

  
1. Tertiary beam halo generated in the collimation 

systems (“collimation tails”). 
2. Beam-gas: products of beam-gas interactions in 

straight sections and arcs upstream of the experiments 
and after the cleaning insertions. 

3. Cross-talk between experiments at different IPs. 
4.  “Kicker prefire”: any remnants of a mis-steered beam 

uncaptured in the beam dump system. 
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Machine-Induced Muon Fluxes in CMS  
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MIB vs IP: Neutron Flux in CMS 
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LHC, 7x7 TeV, 1034 cm-2s-1 

pp Tertiary halo, Beam2 

Barrel Si tracker at r=4 cm: Fn(pp) ≈ 105 Fn(MIBtotal), but 
can differ by only a factor of 10 or so at startup conditions 
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Detector and Collider Protecting Components 

• IP Collision Debris: 
 0.95 kW LHC, 4.76 kW HL-LHC and 43.2 kW FCC on each side of IP 

 Beampipe and innermost detector component design  

 Detector forward region shielding and sealing tunnel/hall interface 

 Inner triplet (IT): front absorber (TAS, L~20m), large-aperture quads 
with tungsten inner absorbers, absorbers in interconnect regions 

 Neutral beam dump (TAN, L~147m) and Single-Diffraction collimators in 
dispersion suppression regions (TCL, L~149 and 190m)  

• Beam Loss: 
 Energy stored in each beam: ~0.3 GJ LHC and >8 GJ FCC 

 Betatron and momentum multi-stage collimation systems (L=1/4 C) 

 Beam abort system (L=1/8 and 3/8 Circumference) 

 Tungsten tertiary collimators (TCT, L~150m) and TAS (L~20m) 

 Detector forward region shielding and sealing tunnel/hall interface 

L is a distance from IP1/IP5 in LHC 
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Shielding and Monitoring Beam Loss in CMS 
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LHC IR1/IR5 70-mm Coil ID IT Protection 

Copper 
1.8-m long 
34-mm ID, 0.5-m OD 

SS 
53-mm ID 
66-mm OD 

3-mm SS 

TASB: SS/Cu 
1.2-m long 
60-mm ID 
120-mm OD 
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LHC IR1/IR5 Protection 

IP TAS TAN 

TCL 

TCT 
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MDI Principal Design Constraints: Detector 

 Detector component radiation aging and damage: CMS 
and ATLAS trackers and endcap calorimeters can 
currently survive up to ~500 fb-1; will be able to handle ~ 
3000 fb-1 after Phase II upgrade   

 Reconstruction of background objects (e.g., tracks) not 
related to products of pp-collisions; the wish occupancy 
<1%, although D0 worked with many layers with 
occupancies above 10% 

 Deterioration of detector resolution, e.g., jets energy 
resolution due to extra energy from background hits 

 Good progress in detector technologies on all fronts, e.g., 
picosecond scale time resolution 
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MDI Principal Design Constraints: IR Magnets 

 Quench stability: peak power density in the 
innermost cable / heat transfer; keep below ~5 mW/g 
in Nb3Sn; primary criterion at LHC 

 Dynamic heat loads: cryo plant capacity and 
operational cost; keep below 10-15 W/m in cold mass  

 Radiation damage: peak dose on the innermost coil 
layer over system lifetime (3000 fb-1 at HL-LHC and 
FCC): keep below 25-35 MGy in insulation and a 
fraction of DPA in coil inorganic materials; primary 
criterion at HL-LHC and FCC 



150-mm HLumi LHC IT-CP-D1 
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D1 

Q3 

Q2B 
Q2A 

Q1 
TAS 

CP 

IP 
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(coil) aperture 

150mm 

TAS 
ID=60mm 



HL-LHC IT Modeling 
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Cu TAS W-inserts 
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150-mm Coil ID Inner Triplet with 6 to 16mm 
Thick Tungsten Inserts 
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MCBX3 Q2 

D1 Sextupole 
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Loads in IT Superconducting Coils:HL-LHC vs LHC 
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With the protection system implemented in the HL-LHC IT 150-mm 
coil ID magnets, the peak dose in the coils at integrated luminosity 
of 3000 fb-1 is about same as in the LHC 70-mm aperture quads 
(with modest SS inserts) at integrated luminosity of 300 fb-1   

CERN (FLUKA) - FNAL (MARS) 
coherent simulation/design 
achievements for HL-LHC: 
• Peak power density safely below 
    the quench limit 
• Average dynamic heat load on 
    cold mass ~14 W/m 
• The peak dose on insulation over 
     3000 fb-1 is at or slightly above 
     the common limits (R&D is 
     underway)  



Comparing HL-LHC and FCC at 5x1034 cm-2s-1  

1. Modeling 14 and 100 TeV pp events at IP (z=0) 

2. Scoring particle and energy fluxes on a R=5mm sphere 

3. Modeling particle and energy loads on detector, TAS and 
collider 

4. All simulations are done with DPMJET-III and MARS15 
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HL-LHC FCC 

√S (TeV) 14 TeV 100 TeV 

sin (mb) 85 108 

Int. rate (s-1) 4.25x109 5.4x109 

TAS ID (mm) 60 22 

TAS Length (m) 2 3 

TAS Lnon-IP (m) 22 35 



Comparing DPMJET to LHC Data 
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MARS simulations in 1996 to 2003 helped design the optimal 
high-luminosity Interaction Regions IR1 and IR5 of LHC,  
including their TAS, TASB and TAN absorbers, and predict 
superconducting magnet short-term (quench stability) and 
long-term (lifetime) performances. 

“MARS predictions of 16 years ago of energy deposition in the 
low-beta quads agree within 20% with recent measurements in 
the real LHC machine. No beam-induced quench has been 
observed at LHC”. Lucio Rossi, talk at Fermilab, February 
2014. 

Note that one and a half decades ago there was no experimental data 
above 1 TeV to verify the code’s physics models. These days – working on 
the HiLumi LHC upgrade - we have a luxury of coherent studies with the 
FLUKA and MARS codes benchmarked in the TeV energy region. 
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Modeling Radiation Loads in LHC IR 



Backgrounds: FLUKA-MARS15 Comparison 
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Backgrounds at CMS from 3.5 and 7-TeV beam-halo  

3.5 TeV 7 TeV 
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50x50 TeV pp at IP: dN/dh, dN/dpt and dN/dEkin 
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50x50 TeV: Multiplicity at IP and dE/dh at 5 mm 
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HL-LHC vs FCC: Total Yield & Energy at 5mm 
from IP and through TAS 
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HL-LHC FCC 

<Ntot> at IP 120 181 

N at 5mm+ 151 228 

Ntot at Lnon-IP
* 5.9 7.72 

E at 5mm (TeV) + 13.28 94.75 

Etot at Lnon-IP (TeV) * 5.53 42.45 

+   Hyperons not included 
*  Thru TAS on each side of IP 
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HL-LHC vs FCC: Particle Yields at 5mm from 
IP and through TAS 
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14-TeV pp HL-LHC 100-TeV pp FCC 
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HL-LHC vs FCC: Energy Flux at 5mm from IP 
and through TAS 
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14-TeV pp HL-LHC 100-TeV pp FCC 



Energy Frontier Hadron Collider, Fermilab, August 25-28, 2014 

Dynamic Heat Loads on Each Side of IP (kW) 
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HL-LHC FCC 

½ Detector w/shield 0.385 0.77 

TAS  0.615 5.75 

Collider 3.76* 36.68 

Total 4.76 43.20 

*  IT(cold mass)+IT(W/screen)+rest = 0.63 + 0.61 + 2.52 = 3.76 kW 
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Summary 

• IP collision debris: dominant at multi-TeV pp colliders; 
hard to deal with but manageable up to HL-LHC. Very 
challenging for a 100 TeV pp-collider. The FCC inner 
triplet based on large-aperture cos-theta Nb3Sn quads 
with a room for thick tungsten inserts is a preferable 
solution. 20-T HTS and open-midplane dipole-first IR 
schemes also deserve consideration. 

• Machine-induced backgrounds: manageable for multi-TeV 
proton beams with appropriate multi-component 
collimation systems far from IP and in IP vicinity. 

• Full simulations on FCC need to be launched iteratively 
with detector, IR lattice and magnet designers. 


