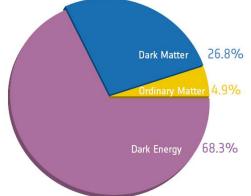
Vector Boson Productions Associated with New Physics


Bhaskar Dutta

Texas A&M University

Next steps in the Energy Frontier - Hadron Colliders, FNAL, 2014

Big Picture

→ We want to understand the next layer of matter - Dark Matter (DM)

→DM content determination mostly depend on colorless particles, e.g., sleptons, staus, charginos, neutralinos, etc. and also depend on small mass gaps (△M) between lightest (LSP) and next to lightest particles (NLSP)

→ How do we produce these non-colored particles and the DM particle at colliders? Can we understand the origin of DM?

Dark Matter: Thermal

- **Suitable DM Candidate:** Weakly Interacting Massive Particle (WIMP)
- Typical in Physics beyond the SM (LSP, LKP, ...)
- Most Common: Neutralino (SUSY Models)

smaller annihilation cross-section

Neutralino: Mixture of Wino, Higgsino and Bino

Larger annihilation $\overset{\checkmark}{}$ cross-section, smaller mass gaps

Wino, Higgsino \Rightarrow smaller ΔM is inevitable between NLSP & LSP Bino \Rightarrow May require smaller ΔM between NLSP & LSP for thermal DM Can we establish these features at the LHC?

LHC status...

Recent Higgs search results from Atlas and CMS indicate that m_b ~126 GeV

in the tight MSSM window <135 GeV

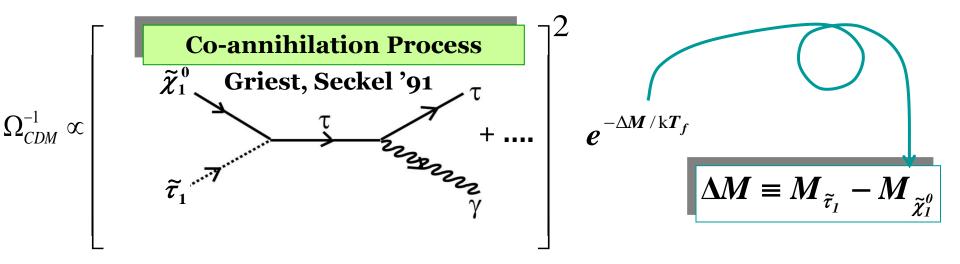
$$m_{\widetilde{q}}$$
 (1st gen.) ~ $m_{\widetilde{g}}$ ≥ 1.7 TeV

- → For heavy $m_{\tilde{q}}$, $m_{\tilde{g}} \ge 1.3$ TeV
- → $\widetilde{t_1}$ produced from \widetilde{g} , $m_{\widetilde{t_1}} \ge 700$ GeV
- → $\widetilde{t_1}$ produced directly, $m_{\widetilde{t_1}} \ge 660$ GeV (special case)
- $\rightarrow \widetilde{e} / \widetilde{\mu}$ excluded between 110 and 280 GeV for a mass-less $\widetilde{\chi}_1^0$ or for a mass difference >100 GeV, smaller ΔM is associated with smaller missing energy
- → $\tilde{\chi}_1^{\pm}$ masses between 100 and 700 GeV are excluded for mass-less $\tilde{\chi}_1^0$ or for non-negligble mass difference

LHC Constraints and DM

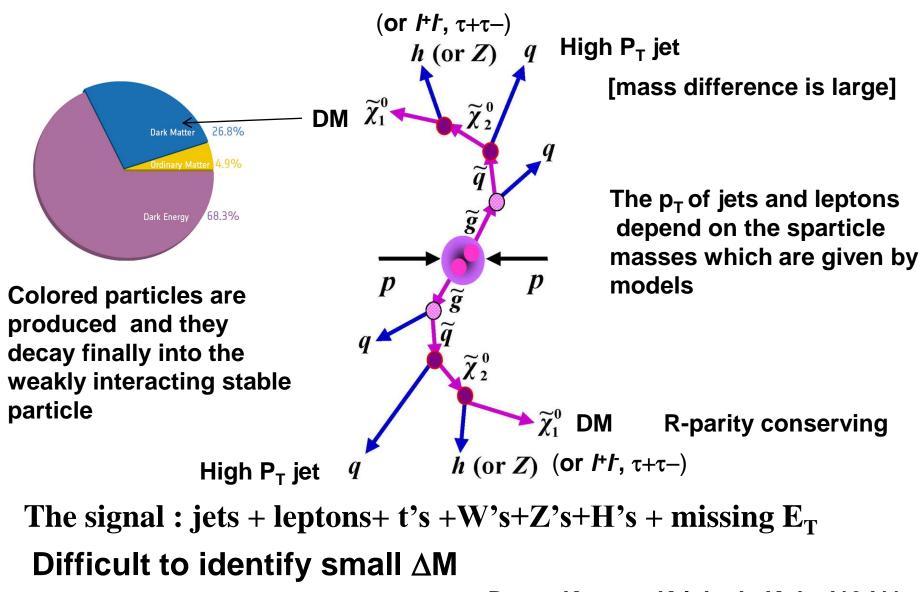
- LHC constraints on first generation squark mass + Higgs mass:
- Natural SUSY and dark matter [Baer, Barger, Huang, Mickelson,
- Mustafayev and Tata'12; Gogoladze, Nasir, Shafi'12, Hall, Pinner, Ruderman,'11;
- Papucchi, Ruderman, Weiler'11],
- Higgs mass 125 GeV & Cosmological gravitino solution [Allahverdi, Dutta, Sinha'12]

→ Higgsino dark matter


Higgsino dark matter has larger annihilation cross-section Typically > 3 x 10⁻²⁶cm³/sec for sub-TeV mass

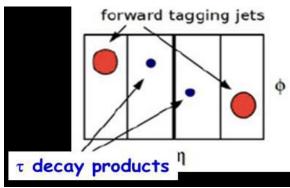
→ Thermal underproduction of sub-TeV Higgsino → Nonthermal scenarios/axions Higgsino DM has small △M

→Can we establish this scenario?


Small ΔM

Small mass gaps between LSP and NLSP→ coannihilation→increase the annihilation cross-section

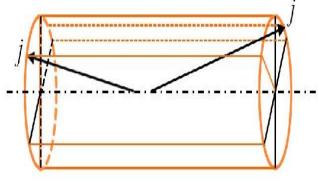
Understanding small mass gaps is crucial for establishing dark matter models


Small AM via cascade

Dutta, Kamon, Krislock, Kolev'10,'11 7

Small AM via VBF

Challenge: How can we probe the colorless SUSY sector? We will use VBF topology: Tagging VBF jets



Refs (For example):

- A. Datta, P. Konar,
- B. B. Mukhopadhyaya, PRL 88 (2002)
- G. Giudice, T. Han, K. Wang, L.T. Wang, PRD 87 (2013) 035029

Dutta, Gurrola, Kamon, John, Sinha, Shledon; Phys.Rev. D87 (2013) 035029

A.G. Delannoy, B. Dutta, A. Gurrola, W. Johns, T. Kamon, E. Luiggi, A. Melo, P. Sheldon, K. Sinha, K. Wang, S. Wu, PRL 111 (2013) 061801

VBF tagged jets (2 energetic jets with large $\Delta\eta$ separation: large M(jj) in forward region, opposite hemispheres)

VBF production topology in transverse plane

Compressed Sleptons Via VBF

Small mass gap measurements using VBF topology → Various Coannihilation regions:

$$\widetilde{\mu}, \widetilde{e} - \widetilde{\chi}_1^0, \widetilde{\tau} - \widetilde{\chi}_1^0, \widetilde{\chi}_1^\pm, \widetilde{\chi}_2^0 - \widetilde{\chi}_1^0, \widetilde{t} - \widetilde{\chi}_1^0, \hat{b} - \widetilde{\chi}_1^0$$

Very little/no constraint from the current bound (future projections)

These scenarios need higher energy collider, e.g., 100 TeV Collider

Compressed Sleptons Via VBF

 $pp \rightarrow \widetilde{\mu}\widetilde{\mu}jj$ Signal: $^{2j+2\mu+}$ missing energy, $pp \rightarrow \widetilde{\nu}\widetilde{\mu}jj$ Signal: $^{2j+1\mu+}$ missing energy,

$$\Delta m = m_{\widetilde{\mu}} - m_{\widetilde{\chi}^0_1} = 15 GeV$$

Table I.1: $[2j + 2\mu + \not{E}_T \text{ study:}]$ Summary of the effective cross section (fb) for the signal and main sources of background at LHC14 for the benchmark point $(m_{slep}, m_{neu1}) = (135, 120)$ GeV. All mass scales are in GeV.

Selection	(135, 120)	VV+j	ttbar+j	W+j	Z+j
Initial	0.4910	1341.0000	702955.00	187575000.00	55570000.00
b-veto	0.4801	1231.0800	179234.00	186282000.00	52453900.00
$_{2} j (p_{T_j} > 30)$	0.2653	207.6700	33206.30	23814100.00	9614190.00
$\eta_{j_1}\eta_{j_2} < 0$	0.2473	157.7410	9784.39	3486260.00	1210970.00
$\geq 2\mu^{-1}$	0.0761	7.3568	179.96	0.00	9428.27
2 μ	0.0761	6.8903	179.11		9428.27
OS charge	0.0761	5.4075	172.00		9428.27
veto e, τ	0.0746	4.4558	144.79		8725.97
Z-veto	0.0679	2.5496	123.92		307.54
Central μ selection	0.0514	1.9191	49.01		128.53
$ \eta_{j_{1,2}} > 1.7$	0.0257	1.0654	6.65		9.18
$M_{j_1 j_2} > 600$	0.0247	1.0264	4.10		0.00
$\Delta \hat{\phi}_{j_1 j_2} < 1.0$	0.0096	0.1288	0.85		
$E_T > 200$	0.0039	0.0184	0.00		
$H_{T} > 200$	0.0039	0.0153			
$p_{T_{\mu_1}} + p_{T_{\mu_2}} < 70$	0.0024	0.0020			
$p_{T_{\mu_2}} > 5$	0.0024	0.0020			
$p_{T_{\mu_1}} > 10$	0.0024	0.0020			
$p_{T_{\mu_2}} < 10$	0.0021	0.0020			

Combining

LHC 14 TeV : Signal: $2j + \ge 1\mu + \text{ missing energy}$,

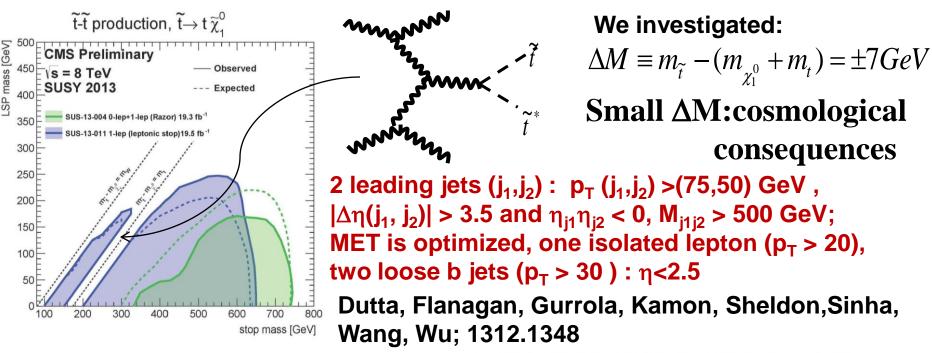
5 σ reach is 135 GeV with 10-15 GeV ΔM for 3000 fb⁻¹

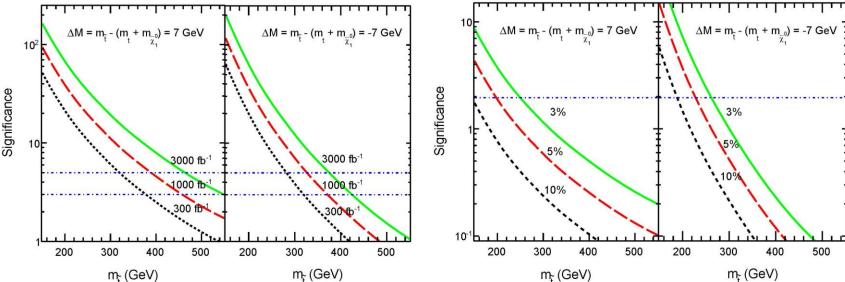
Dutta, Ghosh, Gurrola, Kamon, Sinha, Wang, Wu; to appear

Compressed Higgsino Via VBF

Lightest neutralino: Higgsino type → Well Motivated

 $\widetilde{\chi}_1^0, \widetilde{\chi}_1^{\pm}, \widetilde{\chi}_2^0$: similar masses


Can we probe 10 GeV mass difference?


Signal: 2 j+ Met + 1 lepton for Direct Production

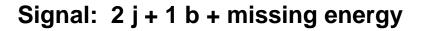
2 leading jets (j_1, j_2) : $p_T (j_1, j_2) > (75, 50)$ GeV, $|\Delta \eta(j_1, j_2)| > 3.5$ and $\eta_{j1} \eta_{j2} < 0$, $M_{j1j2} > 500$ GeV; MET is optimized One isolated lepton ($p_T > 20$), two loose b jets ($p_T > 30$): $\eta < 2.5$

Work in Progress

Compressed Stop Via VBF

Compressed Stop Via VBF

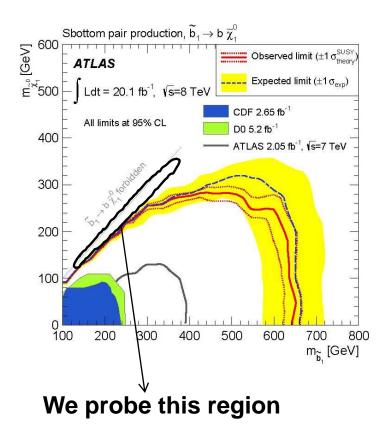
2 leading jets (j_1, j_2) : $p_T (j_1, j_2) > (75, 50)$ GeV, $|\Delta \eta(j_1, j_2)| > 3.5$ and $\eta_{j1}\eta_{j2} < 0$, $M_{j1j2} > 500$ GeV; MET is optimized One isolated lepton ($p_T > 20$), two loose b jets ($p_T > 30$): $\eta < 2.5$


 $\Delta M > m_t : \widetilde{t} \to t + \widetilde{\chi}_1^0$

	Signal	$t\overline{t}+ ext{jets}$
D (F F 104	C O 105
		$3.8 imes10^4$
-		$8.1 imes 10^3$
		$4.5 imes10^3$
		990
		580
$200 < E_T < 300$	3.2	83
Pre cut	$7.2 imes10^3$	$6.9 imes 10^5$
VBF	250	$3.8 imes10^4$
1 lepton	56	$8.1 imes 10^3$
2 b-jets	32	$4.5 imes10^3$
$E_{\rm T} > 100$	8.9	990
$100 < E_{\rm T} < 200$	7.3	580
$200 < E_T < 300$	1.2	83
Pre cut	$1.6 imes10^3$	$6.9 imes 10^{5}$
VBF	62	$3.8 imes10^4$
1 lepton	14	$8.1 imes10^{3}$
-	8.4	$4.5 imes 10^{3}$
	4.8	990
	2.4	580
$200 < E_T < 300$	0.66	83
Pre cut	460	$6.9 imes10^8$
		$3.8 imes10^4$
		$8.1 imes 10^{\circ}$
-		$4.5 imes 10^3$
		4.0×10 370
		580
		83
	$\begin{array}{c} {\rm VBF} \\ 1 \; {\rm lepton} \\ 2 \; b{\rm -jets} \\ {I\!$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

 $\Delta M < m_{\star}: \tilde{t} \rightarrow b + W + \tilde{\chi}_{1}^{0}$

$(m_{ ilde{t}},m_{ ilde{\chi}_1^0})$	Selection	Signal	$t\bar{t}$ +jets
(200, 35)	Pre cut	$5.6 imes10^4$	6.9×10^{5}
$\Delta M = -7 \mathrm{GeV}$	VBF	$1.4 imes 10^4$	
	1 lepton	270	$8.1 imes 10^3$
	2 b-jets	79	$4.5 imes 10^3$
	$E_{\rm T} > 100$	29	990
	$100 < E_{\rm T} < 200$	25	580
	$200 < \not\!\!\!E_T < 300$	4.1	83
(300, 135)	Pre cut	$7.7 imes 10^3$	$6.9 imes 10^8$
$\Delta M = -7$	VBF	220	$3.8 imes 10^4$
	1 lepton	43	$8.1 imes 10^3$
	2 b-jets	12	$4.5 imes10^{3}$
	$E_{\rm T} > 100$	6.7	990
	$100 < E_T < 200$	4.5	580
	$200 < E_T < 300$	1.4	83
(400, 235)	Pre cut	$1.6 imes10^3$	$6.9 imes 10^8$
$\Delta M = -7$	VBF	51	$3.8 imes 10^4$
	1 lepton	10.	$8.1 imes 10^3$
	2 b-jets	2.8	$4.5 imes10^3$
	$E_{\rm T}>200$	0.7	100
	$100 < E_T < 200$	1.7	580
	$200 < E_T < 300$	0.4	83


Compressed Sbottom Via VBF

mann

Compressed Region: $\Delta M \equiv m_{\widetilde{b}} - m_{\chi_1^0} = 5 GeV$

Dutta, Gurrola, Kamon, Sinha, S. Wu, Z. Wu; in progress

Comp. Spectra Via VBF at 100 TeV

We consider 5 spectra with small mass gaps:

$$\begin{split} &1.\tilde{e}_{1}, \tilde{\mu}_{1}: 329, \tilde{v}: 319, \tilde{\chi}_{i}^{0}: 206, 290, 332, 671, \tilde{\chi}_{i}^{\pm}: 208, 337\\ &2.\tilde{e}_{1}, \tilde{\mu}_{1}: 231, \tilde{v}: 218, \tilde{\chi}_{i}^{0}: 185, 237, 299, 356, \tilde{\chi}_{i}^{\pm}: 229, 354\\ &3.\tilde{\mu}_{1}, \tilde{e}_{1}: 489, \tilde{v}: 483, \tilde{\chi}_{i}^{0}: 88, 500, 818, 829, \tilde{\chi}_{i}^{\pm}: 500, 829\\ &4.\tilde{\mu}_{1}, \tilde{e}_{1}: 205, \tilde{v}: 190, \tilde{\chi}_{i}^{0}: 188, 216, 1019, 1021, \tilde{\chi}_{i}^{\pm}: 216, 1022\\ &5.\tilde{\mu}_{1}, \tilde{e}_{1}: 496, \tilde{v}: 491, \tilde{\chi}_{i}^{0}: 481, 501, 1019, 1027, \tilde{\chi}_{i}^{\pm}: 501, 1026 \end{split}$$

$$1.\tilde{\chi}_{1}^{\pm} \rightarrow l \tilde{\chi}_{1}^{0}(0.3), q q' \tilde{\chi}_{1}^{0}(0.7); \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{\pm}(0.5), Z \tilde{\chi}_{1}^{0}(0.5);$$

$$2.\tilde{\chi}_{1}^{\pm} \rightarrow l \tilde{v}; \tilde{\chi}_{2}^{0} \rightarrow v \tilde{v}(0.8), l \tilde{l}(0.2); \tilde{v} \rightarrow v \tilde{\chi}_{1}^{0}, \tilde{l} \rightarrow l \tilde{\chi}_{1}^{0}$$

$$3.\tilde{\chi}_{1}^{\pm} \rightarrow l \tilde{v}; \tilde{\chi}_{2}^{0} \rightarrow v \tilde{v}(0.85), l \tilde{l}(0.15); \tilde{v} \rightarrow v \tilde{\chi}_{1}^{0}, \tilde{l} \rightarrow l \tilde{\chi}_{1}^{0}$$

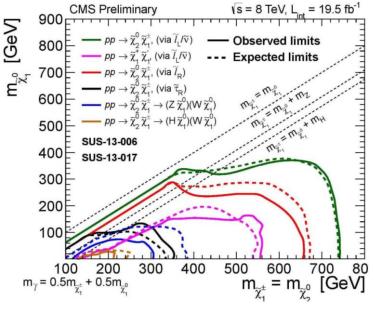
$$4.\tilde{\chi}_{1}^{\pm} \rightarrow l \tilde{v}; \tilde{\chi}_{2}^{0} \rightarrow v \tilde{v}(0.85), l \tilde{l}(0.15); \tilde{v} \rightarrow v \tilde{\chi}_{1}^{0}, \tilde{l} \rightarrow l \tilde{\chi}_{1}^{0}$$

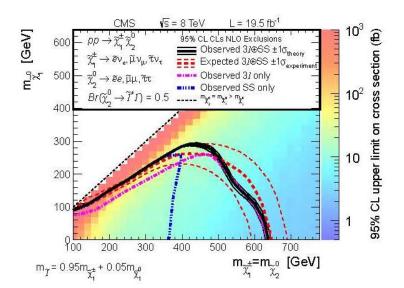
$$5.\tilde{\chi}_{1}^{\pm} \rightarrow l \tilde{v}; \tilde{\chi}_{2}^{0} \rightarrow v \tilde{v}(0.8), l \tilde{l}(0.2); \tilde{v} \rightarrow v \tilde{\chi}_{1}^{0}, \tilde{l} \rightarrow l \tilde{\chi}_{1}^{0}$$

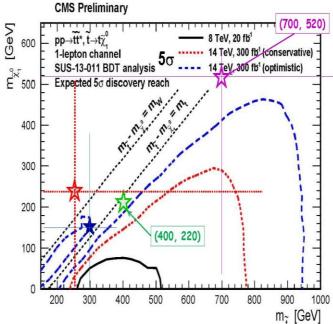
$$Dutta,Ghosh, Padhi,work in progress$$

Conclusion

>Small mass gap measurements are very important


Small mass gaps between LSP and NLSP have cosmological consequences


VBF topology is very helpful in establishing signals with small mass gaps


LHC reach is not large for sparticle spectrum with small mass gaps

>Higher energy collider will be important

Back-up

