Development of granular target for CADS

Yang, Lei

Chinese Academy of Sciences Institute of Modern Physics

ADS (Accelerator Driven System)

accelerator

Industrial facility ~50MW=2.0GeV@25mA

Subcritical core/blanket

Industrial facility ~500MW

Spallation target

Density of heat deposited by proton beam : ~ X kW/cm^3

Transmutation	Industrial Scale	Industrial Scale	Industrial Scale		Transmutation	Industrial Scale Facility	Industrial Scale Facility
Demonstration	Transmutation	Power Generation	Power Generation		ranomacación	industrial source rubinty	industrial scale racinty
		with Energy	without Energy		Demonstration	driving single subcritical	driving multiple subcritical
		Storage	Storage				
1-2 MW	10-75 MW	10-75 MW	10-75 MW		(MYRRHA [5])	core (EFIT [10])	cores (ATW [11])
0.5-3 GeV	1-2 GeV	1-2 GeV	1-2 GeV		1 1 1		(1)
CW/pulsed (?)	CW	CW	CW	Beam Energy [GeV]	0.6	0.8	1.0
N/A	< 25000/year	<25000/year	<25000/year	Beam Power [MW]	1.5	16	45
< 2500/year	< 2500/year	<2500/year	<2500/year	Beam current [mA]	2.5	20	45
					4.111	4.111	4.111
< 2500/year	< 2500/year	< 2500/year	< 250/year	Uncontrolled Beamloss	<1W/m	<1W/m	<1W/m
					. 0 7	.0.00	. 0.00
< 50/year	< 50/year	< 50/year	< 3/year	Fractional beamloss at	< 0./	< 0.06	< 0.02
				full operate (ppm/m)			
> 50%	> 70%	> 80%	> 85%	Tull energy (ppm/m)			
	Transmutation Demonstration 1-2 MW 0.5-3 GeV CW/pulsed (?) N/A < 2500/year < 2500/year < 50/year > 50%	Transmutation DemonstrationIndustrial Scale Transmutation1-2 MW10-75 MW0.5-3 GeV1-2 GeVCW/pulsed (?)CWN/A< 2500/year	Transmutation DemonstrationIndustrial Scale TransmutationIndustrial Scale Power Generation with Energy Storage1-2 MW10-75 MW10-75 MW0.5-3 GeV1-2 GeV1-2 GeVCW/pulsed (?)CWCWN/A< 2500/year	Transmutation DemonstrationIndustrial Scale TransmutationIndustrial Scale Power Generation with Energy StorageIndustrial Scale Power Generation 	Transmutation DemonstrationIndustrial Scale TransmutationIndustrial Scale Power Generation with Energy StorageIndustrial Scale Power Generation without Energy Storage1-2 MW10-75 MW10-75 MW10-75 MW0.5-3 GeV1-2 GeV1-2 GeV1-2 GeVCW/pulsed (?)CWCWCWN/A< 25000/year	Transmutation DemonstrationIndustrial Scale TransmutationIndustrial Scale Power Generation with Energy StorageIndustrial Scale Power Generation without Energy StorageIndustrial Scale Power Generation without Energy StorageTransmutationTransmutation1-2 MW10-75 MW10-75 MW10-75 MW0.5-3 GeV1-2 GeV1-2 GeV1-2 GeV0.5-3 GeV1-2 GeV1-2 GeV1-2 GeV0.6Beam Energy [GeV]0.6CW/pulsed (?)CWCWCWBeam Energy [GeV]0.6N/A< 25000/year	Transmutation DemonstrationIndustrial Scale Power Generation with Energy StorageIndustrial Scale Power Generation without Energy StorageTransmutationIndustrial Scale Facility driving single subcritical core (EFIT [10])1-2 MW10-75 MW10-75 MW10-75 MW0.75 MW0.75 MW0.75 MW0.75 MW0.75 MW0.60.80.5-3 GeV1-2 GeV1-2 GeV1-2 GeV1-2 GeV0.60.80.80.60.8N/A< 25000/year

High Power Spallation target

Solid target options,
which consist of a solid
material in the form of rods,
spheres, or plates
to produce the neutrons,
and coolant flowing
between the elements for
heat removal.

• Liquid target options where a flowing liquid metal acts both as the source of neutrons and the heat removal media.

➤The heat removal (Solid target/beam window) will be limited by the heat conduction of the target material and convection-cooling;

The life time of the target will be limited by the radiation damage, heat shock and al.
 Safety, operation, complexity, al.

Fluid target will be likely used for tens of MW.

Chinese ADS roadmap

Design goals: For CIADS, the target can accommodate 2.5MW=250MeV@10mA; the target system can update to ~50 MW=2.5GeV@20mA.

LM Window target research

window thickness 1mm 2mm 3mm 5mm Average velocity mm/s Strain and Stress distribution Hydrodynamic-Structural-Heat ~ 3 2.0±0.5mm 525 ± 25 K $0.3 \pm 0.05 m/s$

1.04e+0 9.54e-0 9.50e-0 8.75e-0 8.75e-0 7.56e-0 7.56e-0 6.55e-0 6.55e-0 6.55e-0 6.55e-0 5.47e-0 4.57e-0 3.55e-0 3.55e-0 3.55e-0 3.55e-0 3.55e-0 3.55e-0 1.55e-0 1.55e-Dec 05, 2013 FLUENT 6.3 (2d, pbrs. midure, ske) 2 37e+02 2 13e+02 1 36e+02 1 45e+02 1 45e+02 1 17e+02 8 35e+01 6 87e+01 2 18e+01 -2 58e+0 -2 58e+0 -4 86e+0 -3 58e+0 -3 558e+0 -3 558e+0 -3 58e+0 -

 \blacktriangleright Average Beam intensity : ~30 μ A/cm^2. For an ADS, If the diameter of the beam pipe can choose ~30-40 cm, then, the target would be design for >10MW.

The heat removal of the window will be limited by the heat conduction of the target material and convection-cooling; the life time of the window will be limited by the radiation damage and al.

Dec 05, 2213 FLUENT 6.3 (2d. pbrs

LM Window target design for CIADS

3D coupled analysis: temperature, hydrodymics and structure

LM Window target design for CIADS

3D coupled analysis: temperature, hydrodymics and structure

The free surface in windowless target

Water loop test for full scale windowless HML target HML loop for Small scale windowless HML target

The hydrodynamic instability of system will be increase by the flux of the inlet.
 The region of the eddy could be design, so the annular beam can be used to avoid eddy, but the control of stability is not an easy task.

The Beam-Target-Coupled in windowless HML target by Mass-Parallel CFD (GPU)

MC proton transport code for energy deposition

Mass-Parallel CFD (GPU) for Beam-Target-Coupled

Test by the electron beam coupled with water

Windowless Target Design for CIADS

Compacted Windowless Target					
Target Material	LBE				
Structure Material	316L				
Beam Pipe Diameter	20cm				
Height of Target	500cm				
Coupling Zone Outer Diameter	45cm				
Coupling Zone Height	100cm				
Proton Beam Energy	250MeV				
Proton Beam Current	5mA				

Rotation of liquid for stabilization of the free surface, but the hydrodynamic effects remain to deal with carefully.

3D coupled analysis: temperature, hydrodymics and structure

The system of LBE target will be complex; the challenges of techniques for LBE target.

> Heat removal: heat deposition in LBE would be limited

- LBE's corrosion and erosion of material (now, temperature ~< 550C, velocity ~< 2m/s): The beam power will limited by different of temperature and flux of LBE, because of the corrosion and erosion of the structure material. Beam window material and structure will be a limitation for the beam power increase. **Oxygen control in an LBE environment**
- Hydrodynamics: Cavitation, Shock waves, Splashing. For window target, the window structure will be damaged. For windowless target may increase beam power, but the system is not essential stable .

Radio-toxicity: operation and decommission

- Operation: the production of α-radioactive 210Po having 138 days half-life undergoes α-decay, 210Po is volatile, so that the leakage from the cover gas poses some hazard to operate.
- Polonium release from LBE, To support safety analyses, measure Po release fractions from LBE as a function of LBE temperature and concentration of trace contaminants.
- LBE cleanup chemistry. To limit corrosion of steels in contact with LBE, develop LBE cleanup chemistry techniques. Plate out of spallation products throughout the circulating LM system (piping, heat exchanger(s), filters) is likely with an LM target. The impact on personnel dose and ways to ensure RAMI (Reliability, Availability, Maintainability and Inspectability) and ways to mitigate adverse consequences should be explored.
- Decommissioning: α -activity of the typical lead bismuth coolant is defined by 210mBi (half-life = 3.6×106 years, 209Bi (n, γ) 210mBi) and β-activity of 208Bi (half-life = 3.65×105 y, 209Bi (n, 2n) 208Bi). Thus, the residual activity of lead-bismuth coolant is expected to be as high as millions of years. That purification of lead-bismuth from the long-lived radionuclides should be discussed.

Other problem:

• The intermediate circuit : In principle, lead-bismuth cooled system would not have to have an intermediate circuit separating the primary coolant and water/steam. However, there have been incidents with lead-bismuth cooled reactor.

High Power Spallation target

The windowless HML target is a candidate for the higher power target.

However, for heavy metal liquid, the **hydrodynamic effects** will be a limit for increase the power, such as, the shock wave, hydrodynamic instability, Cavitations and Splashing.

Granular target (windowless) system concept: Dense Granular flow target by gravity

Sand Clock: domed interior is sand sand bucket, sand and time is proportional to the amount of outflow relationship, based on the stock of sand and sand can know the time.

Challenges for Granular target

Time			Comments	Research	
2013/4	PSI	Principle feasibility	Blockage	Empirical regularity: more than 6 times the diameter can not plug,	
2013/4	KIT/ESS	reasisting		the current design is more than 20 times the diameter	
2013/7	International Workshop on "Accelerator Driven System with Thorium"		Hydraynamic al stability	Empirical regularity: P = C, macro-scale micro-simulations and testing.	
	/Korea	feasibility	erosion	Wear test; design dust remove	
2013/10	PSI	device		system	
2013/10	13th Thorium Energy		Heat exchanger	Heat exchanger with jointly developed	
	/CERN		Dust effect (grains lift)	Small lift test	
2013/11	Argon		Protype loop	Next month	
2013/11	MSU				
2013/11	GA		Beam coupled test	Next month	
2013/11	Berkley	Operational	Lifetime	Irradiation data to estimate	
2014/2	КТН	reliability		tungsten carbide	
2014/3	KAERI		Operation complexity	preparing at the venue, permits, etc., for proton beam coupling	

Mass parallel simulation method (GPU) for granular target

- Radiation transport computation in stochastic granular and neutronic analysis, etc.
- Granular flow and fluid flow simulations and thermal-hydraulic analysis.

Coupled computations

2010/11: rank 1 in TOP500; Now rank 8.

GPU hardware

Sugan

128 K20 GPUs ~150 Tflops(D)

250 S1070 GPUs ~300 Tflops(S)

GPU MC Transport program(GMT)

Leakage neutron spectrum for thick spallation target

Spatial distribution of Proton flux

Spatial distribution of Neutron flux

GMT-verification

TOF device & Activation Measurement device

The calibration and verification for the measurements device

Proton Beam in IMPCAS: 10MeV~1.5GeV

differential energy spectrum & integral yield

GPU method for granular flow

Macro size

600

Physical principle experiments

Granular target physical design & experiments

Mass parallel Simulation: Contact mechanism + MD + MC transport Number of particles: 0.5 M

sidewall distribution at different times Ne

Neutron flux distribution

Sidewall leakage neutron spectrum

spectrum coupled reactor

Granular target have chance to increase power and using for ADS.

Granular target physical design & experiments

Preliminary calculations show: 2.5MW target, the average temperature is less than 550 degrees Celsius export particles, Fraction of volume is stable; 10MW target system, the average temperature is less than 650 degrees Celsius export particles.

Tungsten grains erosion research

		RT	300 ℃	500 ℃	800 ℃	1000 ℃
	min	30	30	20	20	20
VV	Specific wear ratemm ³ /Nm	-4.92E-5	-7.08E-5	-4.62E-6	-9.24E-6	+1.29E-4

		RT	300 ℃	500 ℃	800 ℃	1000 ℃
SiC	min	30	20	20	20	20
	Specific wear rate mm ³ /Nm	-3.56E-7	-2.41E-6	-1.56E-6	-9.63E-7	

实验条件:速度 0.2m/s; 载荷 5N; 温度: RT, 300-1000℃

900 800

ABAII - ALC	and a set		117 500 2000 0			
	对磨材质	RT	300	500	800	1000
	铜块	-4.62E-6	-4.62E-6	-4.62E-6	4.62E-6	6.47E-5
WNiFe合金球 比度场突mm ³ Nm	SiC	-4.62E-6	-6.47E-5	-3.78E-5	-3.78E-5	
1000100	Ti ₃ SiC ₂	-4.92E-5	-7.08E-5	-4.62E-6	-924E-6	+1.29E-4
	W-Re	-7.39919E-5	-1.8496E-4	-0.00252	-4.62449E-6	4.62449E-6
	铜块	-1.38735E-5	-9.24898E-6	-2.31225E-5	8.32408E-5	2.06102E-4
WRe合金球	SiC	-4.62449E-6	924898E-5	-6.93674E-5	-9.24898E-6	-5.54939E-5
比磨损率mm ³ Nm	Ti3SiC2	-4.16204E-5	-9.24898E-6	1.38735E-5	1.8498E-5	1.38735E-5

In the RT-1000 $^{\rm C}$ temperature range, W granular, polycrystalline sintered SiC is excellent in wear resistance, wear amount of <1mm.

Temperature distribution (2.5MW=250MeV@10mA)

Maximum erosion estimation distribution

Granular electron beam coupled test

Power of deposition energy density will same as ADS target from 2.5MW to XX MW

Full scale Granular target test loop

Granular heat exchanger

Countercurrent water corrugated plate heat exchanger to be cooled beryllium alloy particles since the force of gravity under the direction of flow, and the corrugated plate upward flow of the cooling water absorbs the heat carrying particles derived.

NE series hoist suitable for conveying the powder, granular and small block of non-abrasive and abrasive materials small,. because the traction hoist is a ring chain, thus allowing delivery of high temperature materials. General transport height up to 40 meters, TG type up to 80 meters.

Granular engineering has mature technology,

Annual production value > 100 billion \$, including: Mining; chemical; food; Drug; etc.

Potential advantages of the dense granular target by gravity driven Heat removal off line disposal Hydrodynamic stability P=ro g h liquid; fluidized bed dense granular flow P=C Hydrodynamic effect No Splashing; No Cavitations Shock waves Stress waves no easy to spread Lifetime Average radiation damage could small; Replenishable Volume fraction 2 times compare with fluidized bed Intermediate fluid pressure is low Benefits by particles Selected High neutron yield & low radio-toxicity Thermal properties: high capacity & conductivity for potential for higher temperature different Chemistry: low chemical toxicity & low corrosion System Architecture & Simple; Granular engineering has mature technology in **Engineering Fundamentals** the chemical, material and food processing industries. Such experience can be exploited with the design of various components in the development of a complete target system. Interface with accelerator Windowless; normal pressure environment

Research for the next step

Principle feasibility	Blockage	Empirical regularity: more than 6 times the diameter can not plug, the current design is more than 20 times the diameter	ok
	Hydraynam ical stability	Empirical regularity: P = C, macro-scale micro- simulations and testing.	ok
feasibility device	erosion	Wear test; design dust remove system	ok
	Heat exchanger	Heat exchanger with jointly developed	ok
	Dust effect (grain lift)	Small lift test	ok
	Protype loop	Next month	
	Beam coupled test	Next month	
Operational reliability	Lifetime	Irradiation data to estimate tungsten/SiC/WC	
	Operation complexity	preparing at the venue, permits, etc., for proton beam coupling	?

Granular target concept design for CIADS

parameters	
------------	--

Granular material	Tungsten/Tu ngsten alloy
Structure material	Tungsten alloy/SiC
Granular size	~5mm
Inlet temperature	~250 C
MAX Outlet	~650 C
temperature	
Proton beam	250eV@10m A=2.5MW
Intensity of beam	>100 µA/cm^2
Diameter of beam spot	~10cm
Average velocity of granular flow	~0.5m/s

*International patent

Thank you !