Machine Protection Strategy for the ESS Target Station

Tom Shea¹, Linda Coney¹, Andreas Jansson¹, Eric Pitcher¹, Francois Plewinski¹, Rikard Linander¹, Annika Nordt¹, Cyrille Thomas¹, Heine Dølrath Thomsen² ¹European Spallation Source ESS AB, Sweden; ²ISA, Århus, Denmark

thomas.shea@esss.se www.esss.se

Graded Protection

Beam Footprint on Target
Linac Beam is expanded and rastered:
Autral Centrol Defection / P
Horizontal Centroid Deflection / ax Producing reduced

Parameter	Value
Nominal Power	5 MW
Energy	0.5 to 2 GeV
Pulse current	6.2 to 62.5 mA
Pulse Length	5 to 2860 µs
Repetition rate	14 Hz
Bunching frequency	352 MHz
RMS width in linac	2 mm

Example Beam Conditions

- These are examples of beam conditions that must be monitored by beam instrumentation systems
- Many other target stations properties are also monitored, including temperature, flow rates, vibration, etc.
- Target wheel position is also monitored for synchronization with the beam pulses

- Nominal beamlet size and nominal raster amplitude
- Beam is safely delivered to target.
- Collimator in neutron shield wall is adjusted to intercept of somewhat less than 1 W of beam.
- Thresholds on magnet system and instrumentation system readbacks are determined.
- DC magnets are at the wrong settings
- · Reduced beamlet size on target
- With raster functioning, minimal impact
- With simultaneous raster failure. target components survive one pulse
- Window comparators on DC magnets and waveform templates on raster magnets detect cause of off-nominal beam.
- Beamlet misfocussing detected within pulse by adjustable collimator/ halo monitors.
- Beamlet misfocussing and failed raster detected before next pulse by imaging and grid systems
- Failed raster detected within one pulse by Beam Position Monitor (BPM)
- DC magnets are set to focuss beam to sub-mm waist on target surface.
- With raster functioning, some
- Window comparators on DC magnets and waveform templates on raster magnets detect cause of off-nominal beam.
- Beamlet misfocussing detected within pulse by adjustable collimator/halo monitors.

Mis-tuned raster

Nominal footprint on proton beam window (for comparison)

Reduced rastering amplitude would lead to a higher density footprint on the proton beam window

shortened component lifetime

- With simultaneous raster failure, target components damaged within one pulse
- Beamlet misfocussing by imaging and grid systems (failed raster also detected before next pulse, but this could be too late)
- Failed raster detected by within one pulse by Beam Position Monitor (BPM)

• As in Nominal Beam case above, but raster amplitude is low.

- Beam density is elevated and target component lifetime is reduced
- Related Case: over-expanded or missteered beam deposits too much power into components surrounding aperture.
- Window comparators on DC magnets and waveform templates on raster magnets detect cause of off-nominal beam.
- Beam Position Monitor (BPM) detects off-nominal raster amplitude within the pulse
- Grid and imaging systems detect off-nominal beam density after one pulse
- In case of over-expanded or mis-steered beam, thermocouple halo monitors detect elevated power deposition after many pulses