

Proton beam monitors at JSNS of J-PARC

(J-PARC/JAEA) Shin-ichiro MEIGO

Introduction

Beam monitor system at JSNS

- Multi Wire Profile Monitor
- Beam Halo Monitor

Beam flattering system

Proton Beam window

ADS program at J-PARC (TEF-T, TEF-P)

Beam transport to MLF

Targets located at MLF

- Muon target(Stationery type)
 - Carbon graphite (IG430)
 - Highest intensity in the world

Rotating type (6rpm)

- Neutron target
 - Mercury
 - Highest pulse intensity in the world

3.8×10¹²

Light Water

Number of neutrons per pu

Proton beam at the target

- 3NBT•MLF beam operational status
 - Beam study with 0.6 MW beam
 - User operation with 0.3MW beam
 - 1 MW study planned Oct 2014
- Handling of high intensity proton beam
 - Importance of beam profile
 - Pitting damage proportional to 4th power of the peak current density at target (P4 Law)
 - Rastering does not help mitigation.
- JSNS harder condition than SNS
 - SNS: 60Hz, Storage ring without muon target
 - JSNS: 25Hz, RCS with muon target
- Although helium bubbling mitigates the pitting damage, peak reduction is essential. Beam flattening by the non linear beam optics was developed.

Ξ (king) sign appearing

Pin holes are permitted at the inside wall of SNS but not allowed at JSNS due to wall structure.

First beam measurement with foil activation

- 2D profile required for confirmation of tilting beam
- Placing aluminum foil (Al: 1mm-t) placed at the target vessel, residual does was observed by imaging plate (IP).
- No tilting of beam found
- Placed Al foil 1st beam

Vertical position(mm)

Beam diagnostics for profile and halo

- Profile monitor and halo monitor (Online type)
 - Multi Wire Profile Monitors (MWPMs) (15 sets located) : SiC wires
 - Stationary MWPM at proton beam window (PBW) placed at 1.8 m upstream of the mercury target
- o 2D profile: Residual radiation read by the IP (Offline type)

After beam operation: IP was attached at the target by the remote handling

Beam profile at the mercury target

Trend of beam width at the mercury target

Comparison of experimental results						To obtain low peak density, beam width gradually expanded					
	2009 Apr (Run#22)		2009 Nov (Run#27)		2009 Dec (Run#28)		2010 Jan (Run#29)		2010 Dec (Run#36 200kW)		Unit: mm
	σh	σ٧	σh	σν	σh	σν	σh	σν	σh	σ٧	
MWPM	17.3	10.3	22.8	11.0	24.4	11.7	33.8	16.6	54.3	22.6	
IP	17.3	12.3	23.8	11.5	27.0	12.7	33.2	15.4	55.7	20.6	

Ο

- Both results by MWPM and IP show good agreement
 - Demonstration of reliable method
 - Reliable peak density on real time can be obtained by MWPM.

Anomaly beam status observed by MWPM, beam stopped by MPS

Beam width obtained by MWPM

Transverse emittance (RMS) and twiss parameters fitted with the beam width

⇒ Good agreement in whole beam line Being analyzer of beam at RCS extraction

Result of RMS emittance unit: mm mrad

300kW: ε_{h.v} 5.7, 4.9 π

Twiss parameter

300kW twiss parameter αx -1.84, βx 20.4m αy 0.57, βy 5.26m

Calculation of 300 kW case (by RCS group) ϵ 5.4 π α x -2.35, β x 24.8m α y 0.89, β y 5.88m

Residual dose at beam transport: Back ground except several points

Good agreement with the design calculation

Beam halo measurements

- Heat distribution at entrance of target station
 - Scattering beam at PBW producing heat load at target vicinities (< 1W/cc), which is allowable level.

Beam halo measurement

- Heat deposition obtained by the thermo couples
 - After 6 hours operation, temperature will saturate.
- Heat deposition density deduced by temp rising due to beam Q(w/cc)=pC dT/dt

ρ:Density(g/cc), C: Thermal capacity (J/g/K), T:Temp (K),t: Time(s)

For beam of 0.3 MW: Heat at target vicinity ~0.3W/cc

- Peak density and beam halo \Rightarrow Giving optimum operation parameter
- Developed expert system for beam control (Beam orbit and profile)
 - Even a rookie can control the beam with confident as an expert.

Limit of beam expansion by linear optics

- MWPM shows that the distribution is monotonous Gaussian.
- Expanding Gaussian beam to decrease the peak density
 - Vicinity of the target
 - Target blade

- < 1W/cc(0.04J/cc/pulse) < 90W/cc(3.5J/cc/pulse)
- Beam distribution can be approximated by monotonous Gaussian.

Beam flattening system

Beam edge folding by non-linear optics (octupole magnet)

Installation of OCT magnets

- For peak reduction, octupole magnets were installed on July 2013.
 - OCT1 and OCT2 installed at downstream 3NBTand M1 tunnels
 - Beam Position Monitor (BPM) placed at OCT1,2 for beam centering

Shields above M1 tunnel opened for transport OCT2 to tunnel

Horizontal view

Completed installation of OCT1 at downstream of 3NBT tunnel

Beam profile with OCTs

- Simulation (DECAY-TURTLE PSI ver.) shows good agreement. Muon target does not give worse influence on vertical distribution.
- Heat load at target vicinities and radiation dose at entrance of target station became 1/3.
- Not found significant radiation loss due to OCT magnets. This system will use Oct 2014.

Proton beam window (PBW)

- PBW: a boundary between vacuum and helium region
- Remote handling replacement

Replacement of Monitor/PBW

- Accumulated power: 2GWh, which was 1/5 of design (Lifetime of PBW 2years H: 2000 appm, He 1000appm determined based on the PIE result at PSI)
- In 2012 Oct., strange spots were found at helium side and replacement was decided.
- Strange spots may be caused erosion by the radiolytic acid in vessel. Leakage of helium vessel found.
- Status of PBW#2 will be observed this summer.

PBW at vacuum side

Inspection 2012 by high-zoomed camera

Received 2GWh 2x10²¹ pot 4x10²⁰ p/cm²

Zoom (x32)

Profile Monitor

Rad hard Fujikura fiber utilized for transfer imaging

IR system developing

High temp: Watch status of rotating carbon target Low temp(<100C) Watch JSNS and TEF-T target (new technique req.)

TEF-P and TEF-T

- Some budget including beam diagnostic TEF-T approved by government.
- At TEF-T beam line, nonlinear optics or rastering system will be installed
- First beam ~2019

Conclusion

- Using present beam monitor system based on MWPMs and halo monitors, high power beam operation can be performed with highly confident.
- Beam flattening system based on octupole magnets was installed, which can reduce peak heat density from design condition by 30-40 %.
- PBW was replaced. (corrosion spot?)
- New monitor system developing
- ADS program beginning at J-PARC

Thank you for your attention