

Ion-irradiation induced degradation of thermo-mechanical properties of carbon-based materials

<u>M. Tomut</u> C.Hubert, P. Bolz, K. Kupka, C. Trautmann

GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany

Summary

- Materials irradiation facility at GSI
- Irradiation experiments: online and post-irradiation evaluation
- Radiation -induced thermal diffusivity degradation in graphite
- Nanoindentation investigation of mechanical properties of irradiate carbon materials
- Fatigue tests using nanoindentation
- First online creep tests on ion -irradiated carbon materials

Materials irradiation facilities at GSI

UNILAC: beam parameters

50 Hz Mode (Penning, ECR)

50 Hz5 mslength of macropulse

Thermal camera monitoring of sample temperature

M-branch irradiation facility at GSI In situ experiments

- energies close to Bragg peak:
 - to maximize energy deposition and damage
 - to avoid activation
- online and in situ monitoring: video camera, fast IR camera, SEM, XRD, IR spectroscopy

ion species ..C...Xe...U flux: up to10¹⁰ ions/cm² s

Irradiation experiments at M3-branch, UNILAC, GS

- ²³⁸U, 1.14 GeV, 0.5 ms, 0.6 Hz, 4x10⁹ ions/cm² s
- ²⁰⁸Bi, 1 GeV, 0.5 ms, 3.4 Hz, 1.2x10⁹ ions/cm² s
- ¹⁹⁷Au, 945 MeV, 2ms, 40 Hz, 4x10⁹ ions/cm² s

Irradiation experiments

- online
- post-irradiation evaluation

Thermal properties degradation -poistirradiation evaluation

fluences: 1e11, 1e12, 1e13, 5e13/1e14 i/cm² at fluxes ~5e9 i/cm²s

Samples for LFA: Isotropic graphite and flexible graphite

- classical transmission measuring geometry

Transmission

in-plane measuring geometry

Ion-induced thermal diffusivity degradation of graphite

Online monitoring of thermal properties degradation

fluences: significant increase of experimental points number due to online capabilities i/cm² at fluxes ~5e9 i/cm²s

- Thermal conductivity degradation monitoring (on-line using thermal camera: estimation of time constant at cooling)
 - Cu-CD, Mo-Gr: 20rientations, CFC: 2 orientations (U, Bi)

Thermal camera monitoring of sample temperature during cooling

Temporal evolution of maximum temperature in irradiated samples

Post-irradiation tests

- Samples for off-line tests: U, Bi, Au, Xe
- Isotropic graphite, low density graphites: foams and flexible graphite grades,CFC: 2 orientations

Microstructural characterization:

- Raman spectroscopy,
- SEM

Mechanical properties:

Nanoindentation,

Electrical properties:

• 4.point probe resistivity measurements

Mechanical properties degradation-nanoindentation

investigations of hardening and E modulus change of irradiated layers

Applied load (mN)

Time (s)

high temperature

Mechanical behaviour of irradiated isotropic graphite

Evolution with accumulated dose:

Hardness

Fluence /ions/cm²

Mechanical behaviour of irradiated CFC

Radiation induced creep measurements on flexible graphite

Au, 4.8 MeV/u

Impact nanoindentation study of fatigue behaviour of irradiated isotropic graphite

Failure of graphite exposed to pulsed ²³⁸U beam

Experiment

FEM simulations

Conclusions and Outlook

- Ion irradiation induces:
 - early degradation of thermal diffusivity
 - hardening and increase in E modulus
 - fatigue resistance decrease
 - Creep!

dependent on dE/dX

