
Introduction to LArSoft under git / mrb / ups

Erica Snider
Fermilab

LBNE FD Simulation and Reconstruction Meeting
Fermilab

Jan 31, 2014

Jan 31, 2014 LArSoft introduction E. Snider 2

Outline

● Overview

– The git repositories

– mrb

– The working area

– Building, installing, and products

– Installed product structure

– The branching model

● Working with the system

– A walk through example

– Examples of a few other common tasks

● Nightly builds

Jan 31, 2014 LArSoft introduction E. Snider 3

Documentation

● Primary resource

– LArSoft redmine wiki : https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki

● See user environment and developer environment overviews
● Quick-start guide (being revised to better delineate example tasks)
● Information on releases

– Links to documentation on tools

● Code browsers

– Redmine browsers (see “Repository” tab on project pages)

– lxr cross-referencing browser : http://cdcvs.fnal.gov/lxr

● Searches will find hits across repositories (though not quite working yet...)

https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/_The_user_environment_
https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/_The_developer_environment_
https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/_Quick-start_guide_to_using_and_developing_LArSoft_code_
https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/LArSoft_release_list

Jan 31, 2014 LArSoft introduction E. Snider 4

Introduction

● Goals of the transition

– Provide the tools necessary to create a more stable development
environment

– Utilize better supported and more modern development and build tools

● Basic strategy

– Isolate code development from the head of the repository

– Better control merging of changes into the head

– Move away from SoftRelTools build system

Jan 31, 2014 LArSoft introduction E. Snider 5

Introduction

● Major elements of the new system

– git repositories for version control (replaces svn)

● Will also call these “products”, since there is a one-to-one correspondence

– mrb (replaces SRT)

● Creates working area, repository skeletons
● Drives the build procedure (with cetbuildtools)

– Configure + cmake + various make phases

– ups (replaces setup_larsoft_*.sh for user environment)

● setup <product> <version> -q <qualifiers>

– git flow (new)

● A tool that Implements a git development workflow / branching model
● Using it is optional, but basic branching model should be used

git vs. svn

Central
repo

ch
ec

ko
ut

 u
pd

at
e

 c
om

m
it

 a

dd

● Commits shared with everyone instantly
● Conflicts resolved at commit time

“Main”
repo

clo
ne

 /
pu

ll

 p
us

h

1's local
repo

2's local
repo

3's local
repo

ch
e

ck
ou

co
m

m
it

ad

d

● Create a local copy of the “central” repository
● Commit to local local repository first
● Push commits to central repository to share with everyone
● Conflict resolved at time of local “merge” / “rebase”
● Local repositories: many operations are very fast

svn model git model

git repositories

● The svn repository has been factored into smaller git repostories

– Each contains code at similar level in class hierarchy, functionality

– The core LArSoft repositories:

● larcore : Geometry, SummaryData, SimpleTypesAndConstants
● lardata : data products, utilities, RecoBase, etc.
● larevt : Filters, CalData
● larsim : EventGenerator, Simulation, DetSim, LArG4, etc.
● larreco : RecoAlg, HitFinder, ClusterFinder, *Finder, etc.
● larana : Calorimetry, OpticalDetector, ParticleIndentification
● larpandora : Pandora modules and interfaces
● lareventdisplay
● larexamples

Full list at https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/_LArSoft_repositories_packages_and_dependencies_

Jan 31, 2014 LArSoft introduction E. Snider 8

git repositories

● Experiment-specific repositories:
● lbnecode
● uboonecode
● lariatsoft

● Where to find the repositories

– All in Redmine, so url's look like:

● RW: ssh://p-<repo_name>@cdcvs.fnal.gov/cvs/projects/<repo_name>
● Read-only: http://cdcvs.fnal.gov/projects/<repo_name>

● larsoft_data product

– Contains data files extracted from svn repositories – needed to run

– No repository for this

http://cdcvs.fnal.gov/projects/

Jan 31, 2014 9

Structure of repositories

● Internal structure of repositories

– Core LArSoft repositories.

● Take larcore as an example:

CMakeLists.txt

Geometry/
 CMakeLists.txt
 ...
SimpleTypesAndConstants/
 CMakeLists.txt
 ...
SummaryData/
 CMakeLists.txt
 ...
ups/
 CMakeLists.txt
 product_deps
 ...
.git/

cmake configuration files

former svn packages with (mostly)
same content (since most of the code
is detector-agnostic)

the local repository

ups product configuration:
– what it will depend on
– where source, header, fcl files installed
– product version number

Jan 31, 2014 10

Structure of repositories

● Internal structure of repositories

– Experiment repositories.

● Take lbnecode as an example:

CMakeLists.txt

lbne/
 Geometry/
 CMakeLists.txt
 ...
 CalData/
 CMakeLists.txt
 ...
 CMakeLists.txt
 ...
ups/
 CMakeLists.txt
 product_deps
 ...
.git/

cmake configuration files

former svn packages with only
LBNE-specific content

ups product configuration

the local repository

Jan 31, 2014 LArSoft introduction E. Snider 11

Structure of repositories

● Internal structure of repositories

– Experiment repositories.

● Take lbnecode as an example:

CMakeLists.txt

lbne/
 Geometry/
 CMakeLists.txt
 ...
 CalData/
 CMakeLists.txt
 ...
 CMakeLists.txt
 ...
ups/
 CMakeLists.txt
 product_deps
 ...
.git/

One more layer in directory hierarchy:
 Allows packages with same name
 as in core LArSoft (e.g., Geometry)

 #include “lbne/Geometry/...”

Jan 31, 2014 LArSoft introduction E. Snider 12

mrb

● Multi-repository build tool

– Has several responsibilities

● Creates working area skeleton (similar to “newrel” under SRT)
● Assists in checking out code (similar to “addpkg_svn” under SRT)

– Modifies top-level CMakeLists.txt file appropriately
– Makes sure you are on the develop branch

● Configures environment for the build (similar to srt_setup under SRT)
● Top-level driver for the build/install procedure across multiple repositories

– Calls buildtool/cmake to do the actual work
– Supports parallel builds

● Creates new product / repository skeleton

Information on mrb commands: “mrb help”, “mrb <command> -h”

Jan 31, 2014 LArSoft introduction E. Snider 13

The working area

● Code development / build / install takes place in a “working area”

– Like a “test release” under SRT

– Create using “mrb newDev” command

● Structure of the working area

build/
 ...
localProducts_<version>_<qualifiers>/
 setup
 lbnecode/
 ...
srcs/
 CMakeLists.txt
 lbnecode/
 lbne/
 …
 <repository_2>/
 ...

build directory
 All build activities take place here

local install directory
 The results of builds go here
 Will be in the form of ups products,
 e.g. “setup lbnecode ...”

the source area
 Checkout and develop code here

working area setup

Jan 31, 2014 LArSoft introduction E. Snider 14

The working area

● Code development / build / install takes place in a “working area”

– Like a “test release” under SRT

– Create using “mrb newDev” command

● Structure of the working area

build/
 ...
localProducts_<version>_<qualifiers>/
 setup
 lbnecode/
 ...
srcs/
 CMakeLists.txt
 lbnecode/
 lbne/
 …
 <repository_2>/
 ...

checked-out repositories
 “mrb gitCheckout <repo> [tag]”

15

Basic work pattern

● The general pattern of work

– Check out and develop code in “srcs”

– Move to “build” and build the code

● “Out-of-source” build
– Keeps all build configuration, intermediate files, results out of source area
– In principle allows multiple build configurations associated with same source tree

● In principle can be any directory (except the source tree)

– Install the build results in “localProducts”

● Packaged as ups products
● No install takes place if the build fails

– Local products don't break when the build fails.
– Check your build logs!

– Can then “setup” and run from anywhere

● “setup <product> ...” will always find the local version first

–

– build

– localProducts...

● The general work pattern

– Check-out code into srcs. Make changes

– cd ../build. Build the code.

– Install the code

Jan 31, 2014 LArSoft introduction E. Snider 16

Build and install commands

● Two commands available to run the build

– “mrb build”

● Runs cmake + build phases

– “mrb install”

● Runs cmake + build + install phases

– Under some circumstances, can use “make” or “make install” instead

● See the quick-start guide for details

● Many options available to change details of the build

– For example: -I <install directory> to change target installation
directory

– “mrb build -h” for detailed list

17

Structure of installed product

● Starting from localProducts directory:

lbnecode/

 v1_01_01.version/
 v1_00_01/
 gdml/
 ...
 include/
 ...
 job/
 ...
 slf5.x86_64.e4.debug/
 slf5.x86_64.e4.prof/
 source/
 ...
 ups/
 lbnecode.table

 vx_yy_zz.version/
 vx_yy_zz/

Tells ups about this instance

gdml, xml files, associated perl scripts
collected, installed here

Header files collected, installed here

fcl files collected, installed here

Libraries, other build products
by OS flavor+qualifiers

“Installed” source tree.
(i.e., not the full source tree...)

Configuration run by “setup lbnecode”

18

Structure of installed product

● What determines which files get installed where?

lbnecode/

 v1_01_01.version/
 v1_00_01/
 gdml/
 ...
 include/
 ...
 job/
 ...
 slf5.x86_64.e4.debug/
 slf5.x86_64.e4.prof/
 source/
 ...
 ups/
 lbnecode.table

 vx_yy_zz.version/
 vx_yy_zz/

Created by ups

Explicit install directives in CMakeList.txt

“install_header()” macro in CMakeLists.txt

“Install_fhicl()” macro in CMakeLists.txt

CMakeLists.txt: art_make(...)
simple_plugin(...), etc.

“install_source()” macro in CMakeLists.txt

Contents of product_deps
+ explicit fragments defined in
CMakeLists.txt

19

Structure of installed product

● “setup lbnecode” environment

lbnecode/

 v1_01_01.version/
 v1_00_01/
 gdml/
 ...
 include/
 ...
 job/
 ...
 slf5.x86_64.e4.debug/
 slf5.x86_64.e4.prof/
 source/
 ...
 ups/
 lbnecode.table

 vx_yy_zz.version/
 vx_yy_zz/

$LBNECODE_DIR

Included in $FW_SEARCH_PATH

$LBNECODE_INC

Included in $FHICL_FILE_PATH

Included in $LD_LIBRARY_PATH

$LBNECODE_INC

git flow and the branching model

● The goal

– To protect the head of develop branch

● In the “main” and local repositories!

● Strategy

– Develop code in “feature branches”

– Merge into develop only after testing

● Can make the feature branch look
exactly like develop

● Use of git flow is optional

– Strongly encourage use of branching
model for development

– Be sensible circles = commits = state of the respostory
lines = branches

Jan 31, 2014 LArSoft introduction E. Snider 21

Working in the new system: an example

Working in the new system

● Walk through an example

– set up basic environment

– create / initialize a working area

– check out, modify code

– build and install the changes

– run the new version

● Other sample tasks

– add / remove a package from repository

– add / remove a repository from srcs area

– clean build

More example tasks on the LArSoft wiki and quick-start guide:
https://cdcvs.fnal.gov/projects/larsoft/wiki
https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/_Quick-start_guide_to_using_and_developing_LArSoft_code_

Jan 31, 2014 LArSoft introduction E. Snider 23

Check out and make a change

● From a fresh login

…but wait

Create a working area based on larsoft v1_00_01
#
source /grid/fermiapp/lbne/software/setup_lbne.sh
mkdir workdir
cd workdir
mrb newDev -v v1_00_01 -q e4:debug
#
Set up the environment for this work area
#
source localProducts_larsoft_v1_00_01_e4_debug/setup

Jan 31, 2014 LArSoft introduction E. Snider 24

Check out and make a change

● What does this do? Go back to working area:

#
Set up the environment for this work area
#
source localProducts_larsoft_v1_00_01_e4_debug/setup

build/
 ...
localProducts_larsoft_v1_00_01_e4_debug/
 setup
 ...

srcs/
 CMakeLists.txt
 lbnecode/

$MRB_BUILDDIR

$MRB_SOURCEDIR

Added to $PRODUCTS path
Used by ups to find product instances.
Ensures that local version found first

Jan 31, 2014 LArSoft introduction E. Snider 25

Check out and make a change

● continuing...
Check out code
#
cd srcs
mrb gitCheckout lbnecode # abbrev to “mrb g lbnecode”
cd lbnecode
#
Suppose this is a major change, so prepare a feature branch
#
git flow feature start rs_newThing

...
Now assume changes are ready to build and test
#
cd $MRB_BUILDDIR
source mrb setEnv
mrb install

Jan 31, 2014 LArSoft introduction E. Snider 26

Check out and make a change

● continuing...
Oops, typo causes compilation error
#
cd ../srcs/lbnecode
#
...fix

cd ../../build
make install
#
Can use this shortcut if mrb setEnv has been called
already in this login session, cmake stage completed,
and no new files or repositories have been added/removed
#
Assume this succeeds
#
cd ..
setup lbnecode v1_00_01 -q e4:debug
lar -c some_path/my_job.fcl

27

Check out and make a change

● continuing...
Everything works. Now want to push it to the
main repository. But first, get any intervening
changes to the main repository. Then put those
changes on your branch ahead of any of your changes.
#
cd srcs/lbnecode
git pull origin develop
git rebase develop

Build and test again!!
cd ../../build
mrb i # safer at this point than make unless are
 # sure you know what “pull” did
cd ..
lar -c some_path/my_job.fcl
#
Merge back into develop and push
#
git flow feature finish rs_newThing
git push origin develop

Add / remove a “package” from a repository

● Want to add DoThisAlgs package

● To remove the DoThisAlgs package

cd srcs/lbnecode/lbne
mkdir DoThisAlgs
vi CMakeLists.txt
Add “add_subdirectory(DoThisAlgs)” line at end
#
cp Geometry/CMakeLists.txt DoThisAlgs
vi DoThisAlgs/CMakeLists.txt
modify appropriately
Probably takes only minor changes to library list
#
Build as usual. Will need to use “mrb i”

Remove DoThisAlgs package
#
cd srcs/lbnecode/lbne
rm -r DoThisAlgs
vi CMakeLists.txt # remove “add_subdirectory(DoThisAlgs)”

Jan 31, 2014 LArSoft introduction E. Snider 29

Remove existing repository from working area

● Remove larcore repository
cd srcs
rm -rf larcore
#
Need to re-make the top-level CMakeLists.txt in srcs
mrb uc
cd ../build
source mrb setEnv
mrb I

Jan 31, 2014 LArSoft introduction E. Snider 30

Create a new repository / product

● Add a “newthing” repository / product

– Assume you already have somewhere to push it once you're done

Create a repository/product skeleton
cd srcs
mrb newProduct newthing
#
Now need to:
1) Add content
2) Modify top-level CMakeLists.txt
3) Create CMakeLists.txt files throughout
4) Modify ups/product_deps
#
cd $MRB_BUILDDIR
source mrb setEnv
mrb i

Jan 31, 2014 LArSoft introduction E. Snider 31

Clean build

● Just delete everything!

cd build
rm -rf *
#
Can also use “mrb zapBuild”
#
Now need to set up environment again
#
source mrb s
mrb install

Jan 31, 2014 LArSoft introduction E. Snider 32

Nightly builds

● Want to create a version every night from head of repositories

– Version is “nightly”

– “setup lbnecode nightly -q e4:debug”

– New feature: if a build breaks, previous nightly install remains unchanged

● Status

– Creating larsoft nightly by hand since transition

– Script for lbnecode and uboonecode almost working

● Needed to fix some infrastructure to deal with “nightly” version name

– Will be under cron jobs in a day or two

– Scripts can be found in laradmin repository

Jan 31, 2014 LArSoft introduction E. Snider 33

● The LArSoft team

– Dave Dykstra

– Lynn Garren

– Mike Kirby

Brought to you by...

– Gianluca Petrillo

– Ruth Pordes

– Brian Rebel

– Marc Paterno

– Bill Seligman

– Tracy Usher

– Brett Viren

– And anyone else I forgot...

– Eric Church

– Chris Green

– Herb Greenlee

– Tom Junk

– Wes Ketchum

● Many thanks to the beta testers and others who contributed or
provided valuable feedback

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

