Pattern Recognition Techniques for LAr TPC Particle ID---Voronoi Tessellation and Trees

Josh Klein, for Daniel Krupka

Last Meeting

Are These Problems Really Different?

Approach was to completely forget about physics---just make (say) π_0/e separation a technical problem.

Machine-readable Data

Make 1D distributions by calculating moments in time slices:

$$\bar{x}(t) = M_1(t) = \frac{\sum_x p(x, t)x}{\sum_x p(x, t)}$$
$$M_k(t) = \sqrt[k]{\frac{\sum_x p(x, t)(x - \bar{x}(t))^k}{\sum_x p(x, t)}}$$

Where p(x,t) is the charge on wire x at time t.

Moments Plots

Figure 2: Plots of the first four moment signals

Frequency Domain

Ratio of transformed moments is related to event mean path vs. shower shape

Figure 3: $\mathcal{F}[M_2]/\mathcal{F}[M_1]$ vs frequency

Peaks here can be used by your favorite learning algorithm ID efficiency so far is ~60%?

New (More Modest?) Goal: Feature Recognition

Gimp's "Intelligent Scissors"

Voronoi Tessellation

Divides space into zones such that all points within a zone are closer to that zone's "seed" than any other "seed."

Same as a Wigner-Seitz cell

Used in everything from robotic navigation to commerce to epidemiology.

Voronoi Tessellation

Can use arbitrary metrics to define cells:

"Manhattan" metric

Voronoi Trees

To find features, Dan starts with a single seed and creates a Voronoi cell for it (which is just the whole event).

Then he scans outward until he finds a new "seed" which is determined by some threshold of charge above the surrounding empty space.

Voronoi Trees

Each time a new seed is discovered, he re-tessellates the space.

Then he scans outward again from each seed.

He keeps a set of known seeds, a Voronoi tessellation of the TPC vs wire plane corresponding to those seeds, and a set of edges of the tessellation.

Voronoi Trees

A "tree" is created by discovering new seeds within each Voronoi cell---the new seeds have their own (new) Voronoi cells but have been derived from the original seed (they are members of that tree).

Extracting Features

Trees are then broken into "subevents"---individual tracks--based on the local charge density.

Results in paths that have similar charge density (presumably the same ionizing particle).

Extracting Features

Trees are then broken into "subevents"---individual tracks--based on the local charge density.

Results in paths that have similar charge density (presumably the same ionizing particle).

Fragment	Weight
Red	489
Green	114.7
Blue	113.9
Brown	107
Purple	96.8
Cyan	89.9

Figure 2: A clear e^-

Extracting Features

Further Work

- Would like to associate features between views
- Can we associate physical momentum vectors to tracks?
- Maybe use a "physical" metric to define Voronoi cells?
- Need to see how often found tracks are corresponding to real tracks