Lattice QCD and the International Linear Collider

G. Peter Lepage Cornell University (and DAMTP, Cambridge)

7 March 2014

Is an ILC useful?

- ILC \Rightarrow high-precision measurements of Higgs branching fractions, to study Beyond the Standard Model (BSM).
- BSM requires accurate SM parameters: e.g.,
 - **–** $\Gamma(h \rightarrow b\overline{b})$ to 0.3% requires m_b to 0.3% and α_s to 0.5%.
 - $\Gamma(h \rightarrow c\overline{c})$ to 0.7% requires m_c to 0.7% and α_s to 1%.
 - $\Gamma(h \rightarrow gg)$ to 0.6% requires α_s to 0.6%.
- Need: m_b to 0.15%, m_c to 0.35%, α_s to 0.25%
- Is this possible over the next decade or so?
 - Most dramatic recent develops are from LQCD.

See: Lepage, Mackenzie and Peskin, soon.

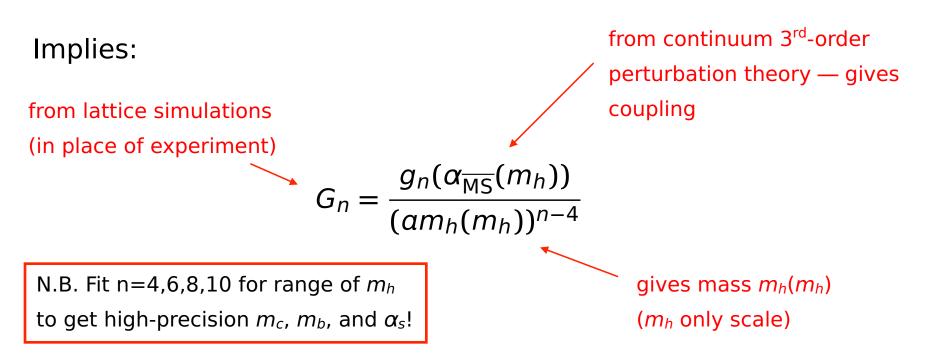
Eg: current-current correlator in LQCD

Compute for heavy valence quark *h*:

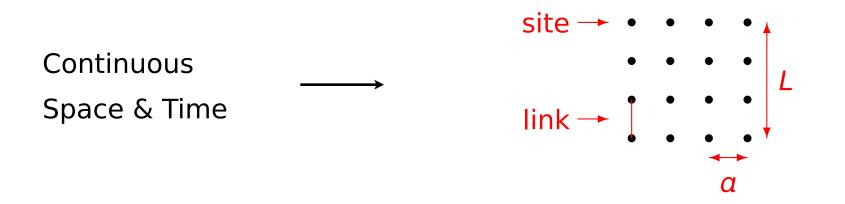
$$G(t) \equiv a^{6} \sum_{\mathbf{x}} (am_{oh})^{2} \langle 0|j_{5h}(\mathbf{x}, t)j_{5h}(0, 0)|0\rangle$$

 $\overline{\Psi}_h \gamma_5 \Psi_h$

• Mass factors imply UV finite (PCAC because HISQ).


• Implies:

$$G_{\text{cont}}(t) = G_{\text{lat}}(t) + \mathcal{O}(a^2)$$
 for all $t \neq 0$


Moments

Low-*n* moments perturbative ($E_{\text{threshold}} = 2m_h$):

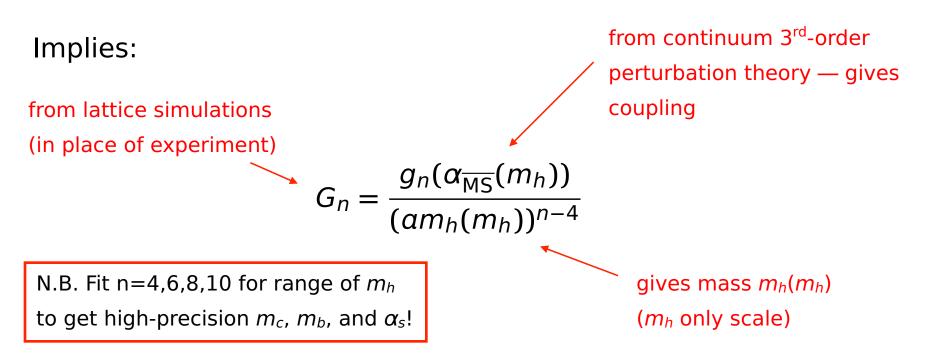
$$G_n \equiv \sum_t (t/a)^n G(t)$$
$$\rightarrow \frac{\partial^n}{\partial F^n} G(E=0)$$

What is lattice QCD (LQCD)?

- ⇒ Fields $\psi(x)$, $A_{\mu}(x)$ specified only at grid sites (or links); interpolate for other points.
- \Rightarrow Solving QCD \rightarrow multidimensional integration:

$$\int \mathcal{D}A_{\mu} \dots e^{-\int Ldt} \longrightarrow \int \prod_{x_j \in \text{grid}} dA_{\mu}(x_j) \dots e^{-\alpha \sum L_j}$$

LQCD simulations


- Integrate path integral numerically need Monte Carlo simulation methods.
- 2. Tune five free parameters bare $m_u = m_d$, m_s , m_c , m_b , and α_s using, *e.g.*, $m(\pi)$, m(K), $m(\eta_c)$, $m(\eta_b)$ and f_{π} .
- Tuned LQCD simulation = real QCD, with no free parameters. Compute vacuum expectation values of numerous operators for multiple lattice spacings a. Extrapolate to a=0 to extract physics.

N.B. LQCD \leftrightarrow experiment.

Moments (again)

Low-*n* moments perturbative ($E_{\text{threshold}} = 2m_h$):

$$G_n \equiv \sum_t (t/a)^n G(t)$$
$$\rightarrow \frac{\partial^n}{\partial F^n} G(E=0)$$

Current best results

 $m_c(m_c, n_f=4) = 1.273(6) \text{ GeV}$ (0.47%, need 0.35%)

 $m_b(m_b, n_f=5) = 4.164(23) \text{ GeV}$ (0.55%, need 0.15%)

 $\alpha_{MS}(M_Z, n_f=5) = 0.1183(7)$ (0.59%, need 0.25%)

	$m_{c}(3)$	$m_{b}(10)$	m_b/m_c	$\alpha_{\overline{\mathrm{MS}}}(M_Z)$
a^2 extrapolation	0.2%	0.6%	0.5%	0.2%
Perturbation theory	0.5	0.1	0.5	0.4
Statistical errors	0.1	0.3	0.3	0.2
m_h extrapolation	0.1	0.1	0.2	0.0
Errors in r_1	0.2	0.1	0.1	0.1
Errors in r_1/a	0.1	0.3	0.2	0.1
Errors in m_{η_c}, m_{η_b}	0.2	0.1	0.2	0.0
α_0 prior	0.1	0.1	0.1	0.1
Gluon condensate	0.0	0.0	0.0	0.2
Total	0.6%	0.7%	0.8%	0.6%

 m_{η_h} (GeV)

McNeile et al (HPQCD), Phys. Rev. D82, 034512 (2010)

Simulate possible future results

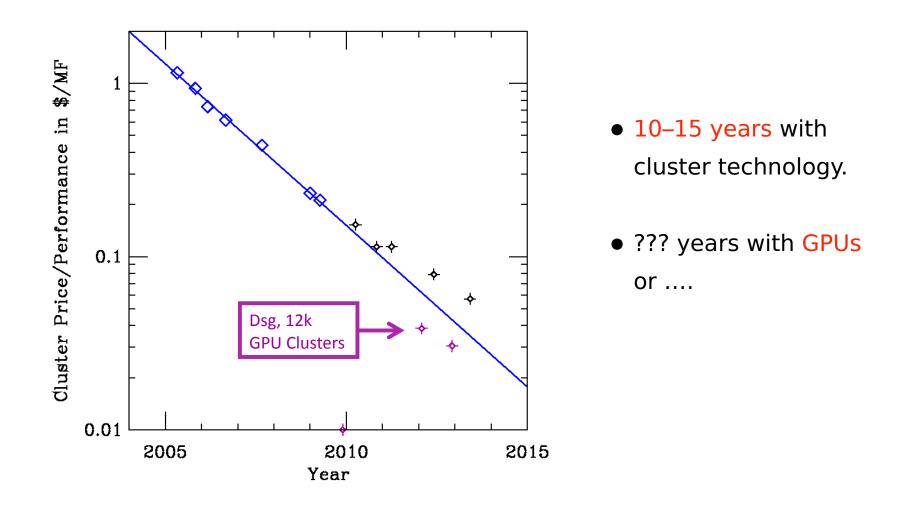
Analysis of current data creates a fit function that describes the dependence of LQCD results on lattice spacing, perturbation theory, statistics, quark masses, *etc*:

- ⇒ Predict what LQCD data at a smaller lattice spacing or a different quark mass or ... will look like by evaluating fit function at smaller lattice spacing or ...
- ⇒ Add realistic noise to generate fake LQCD data with smaller lattice spacings and/or different mass and/or better statistics and/or ...

• Rerun analysis but now on fake data plus existing LQCD data to extract new (fake) results for m_b , m_c , α_s .

 \Rightarrow Impact of fake data on errors.

- Also rerun analysis while pretending that 4th-order perturbation theory is known (add fake 4th-order coefficients).
- ⇒ Map realistic scenarios for hardware/software/theory improvements onto improvements in the precision of m_b , m_c , α_s .


Scenarios for the next decade or so

Some combination of following likely doable:

- 4th-order perturbation theory completed (continuum calculation).
- 100x increase in computing power \Rightarrow
 - Reduce lattice spacing to 0.03fm and 0.0225fm (from 0.045fm).
 - 100x increase in statistics.

How long for 100x in computing?

Historical processor-cluster price / performance data from measurements at USQCD (Fermilab):

Simulation of simulations (% errors)

couplings $\propto \Gamma^{1/2}$

	$m_b(10)$	$\alpha_{\overline{\mathrm{MS}}}(M_Z)$	$m_c(3)$	$h \to b\overline{b}$	$h \to c \overline{c}$	$h \rightarrow gg$
current results (prelim.)	0.65	0.49	0.50	0.82	0.74	0.64
4 th -order	0.63	0.32	0.30	0.74	0.49	0.42
$a=0.03{ m fm}$	0.25	0.36	0.44	0.38	0.60	0.47
a = 0.03 and $0.023 fm$	0.15	0.28	0.43	0.27	0.54	0.36
4 th -order, $a = 0.03$ fm	0.24	0.21	0.22	0.30	0.32	0.27
4^{th} -order, $a = 0.03$ and 0.023fm	0.14	0.16	0.22	0.19	0.29	0.21
4 th -order, $a = 0.03$ and 0.023 fm, 100×stats	0.10	0.11	0.21	0.14	0.26	0.14
ILC goal	0.15	0.25	0.35	0.30	0.70	0.60

Are LQCD errors believable?

Lattice allows checks that are impossible in the continuum:

• Simultaneously fit data for a range of quark masses m_h between m_c and $m_b \Rightarrow$ treat coefficients of $\alpha_s(m_h)^n$ for n>3as fit parameters:

$$g_n(\alpha_{\overline{\text{MS}}}(m_h)) = c_{n0} + c_{n1}\alpha_{\overline{\text{MS}}} + c_{n2}\alpha_{\overline{\text{MS}}}^2 + c_{n3}\alpha_{\overline{\text{MS}}}^3 \leftarrow \text{Pert'n th.}$$
$$+ c_{n4}\alpha_{\overline{\text{MS}}}^4 + c_{n5}\alpha_{\overline{\text{MS}}}^5 + \cdots$$
Fit parameters.

Much more reliable estimate of perturbative errors than, e.g., variation as $\mu \rightarrow \mu/2$ and $\mu \rightarrow 2\mu$.

- Nonperturbative ratios of quark masses easy to measure in LQCD. Compare nonperturbative m_b/m_c (4.49(4)) with perturbative result (4.51(4)). Highly non-trivial check.
- Vary valence quark mass to vary/fit nonperturbative effects. O.P.E. implies:

$$G_n = G_n^{\text{short-distance}} \left\{ 1 + d_n (\alpha_{\overline{\text{MS}}}) \frac{\langle \alpha_s G^2 / \pi \rangle}{(2m_h)^4} + \cdots \right\}$$

perturbation theory, small instantons, *etc* (no IR renormalons)

nonperturbative,
very small (<0.1%)</pre>

N.B. Continuum results using $R(e\overline{e})$ data (instead of LQCD) to compute vector correlators give same masses, with similar errors, to within 1σ . (c.f., Karlsruhe Group.)

Other LQCD technologies

- Higher moments (n=12, 14...) have smaller $(am_b)^2$ errors.
- Avoid (am_b)² errors by using NRQCD/Fermilab b-quark action for m_b current-current correlators. May need better perturbation theory for high-order moments (n=20). Cancel Z factors (nonperturbative). (HPQCD analysis soon)
- α_s from Wilson loops remains competitive at smaller lattice spacings (needs HISQ perturbation theory). Also light-quark vacuum polarization at large Euclidean q² (Adler function). Also ...
- m_b and m_c from off-shell $m_h \langle q | \overline{\psi}_h \gamma_5 \psi_h | q' \rangle$.

Conclusions

- LQCD likely to deliver adequate precision for ILC needs.
- Likely to have multiple approaches for each parameter.
- Improved continuum perturbation theory would help.
- Highly-improved actions (like HISQ) help keep $(am_b)^2$ errors under control.