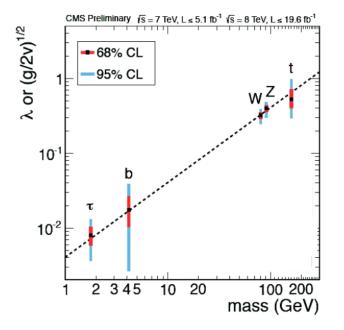
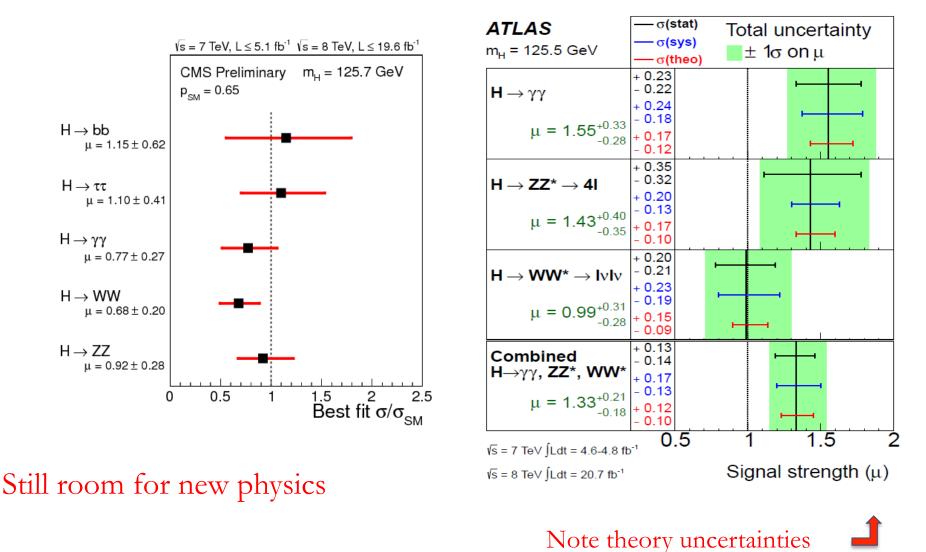

Why Higgs Couplings Matter

S. Dawson, BNL March 7, 2014 Fermilab



All Higgs Couplings predicted in SM


- Very precise predictions
 - Couplings to fermions proportional to mass
 - Couplings to gauge bosons proportional to gM_V
 - Higgs self-couplings proportional to ${\rm M_{H}}^2$

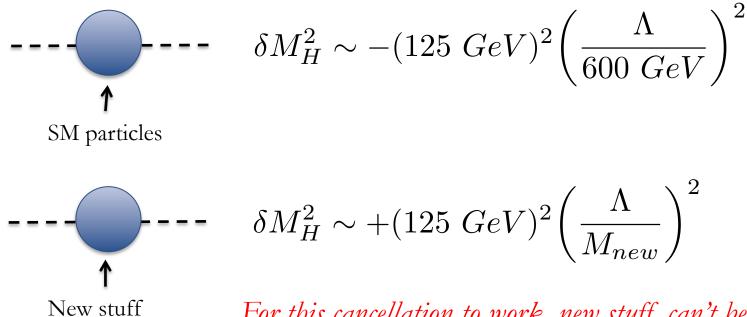
If couplings didn't have this pattern, it would indicate that not all mass comes from a single Higgs boson

*t coupling inferred from ggH top loop

Consistent with SM Hypothesis

S. Dawson

The SM can't be complete

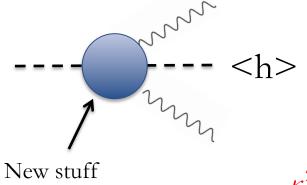

- It doesn't explain:
 - Neutrino masses
 - Dark matter
 - Baryon asymmetry
 - The pattern of fermion masses

The bottom line: The Higgs boson looks SM like and we haven't found any other new particles

Can Higgs couplings tell us something about new physics?

The Naturalness Connection

• Generically, solutions to naturalness involve new particles, which lead to deviations in Higgs couplings

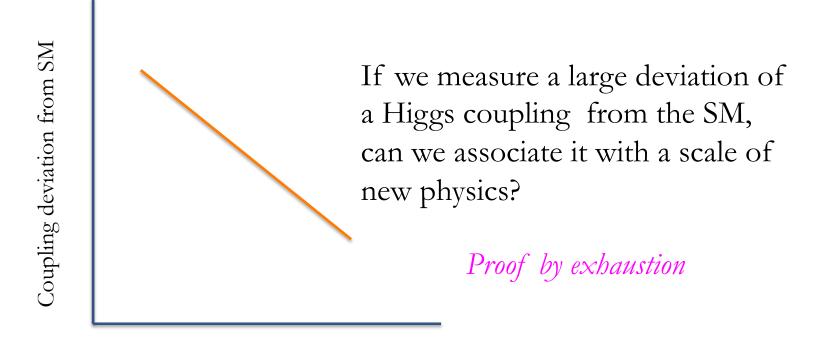


For this cancellation to work, new stuff can't be too much above TeV scale

S. Dawson

The Naturalness Connection

• Generically, solutions to naturalness involve new particles, which lead to deviations in Higgs couplings



MSSM light stops generically contribute (no mixing):

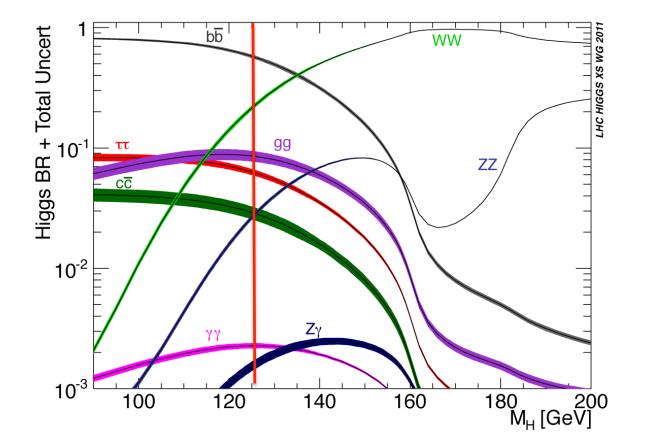
$$\kappa_g^2 = \frac{\sigma(gg \to h)}{\sigma(gg \to h) \mid_{SM}} \sim 1 + \left(\frac{700 \ GeV}{\tilde{m}_t}\right)^2 3\%$$

Target precision < 3%

What we hope for

Scale of new physics

We have to understand the SM first


Precision Higgs Production

Uncertainties in Higgs production at 8 TeV

	Scale	PDF + α_s	Total (linear sum)
ggF	±8%	±8%	±15%
tth	±7%	±8%	±15%
VBF	±1%	±4%	±5%
VH	±1%	$\pm 4\%$	±5%

Need to improve SM calculations and their inputs as we enter a new era of precision Higgs physics!

Theory Predictions of Branching Ratios

Largest Higgs BR is to b's

- Sensitive to m_b : $\Gamma(H \to b\bar{b}) = \frac{G_\mu N_c}{4\sqrt{2}\pi} M_H \beta^3 m_b^2$
- QCD included to NNNLO for H+bb predictions
- Calculate parametric uncertainties by varying m_t , m_c , m_b , α_s and finding maximum deviation from central value
- Add parametric uncertainties in quadrature

Parameter	Central Value	Uncertainty
$\alpha_s(M_Z)$	0.119	$\pm 0.002 (90\% \text{ CL})$
m_c	$1.42 \mathrm{GeV}$	$\pm 0.03~{ m GeV}$
m_b	$4.49 \mathrm{GeV}$	$\pm 0.06~{ m GeV}$
m_t	$172.5~{\rm GeV}$	$\pm 2.5 \ { m GeV}$

Input values for Higgs BR fits

Need to reduce uncertainty on m_b , α_s

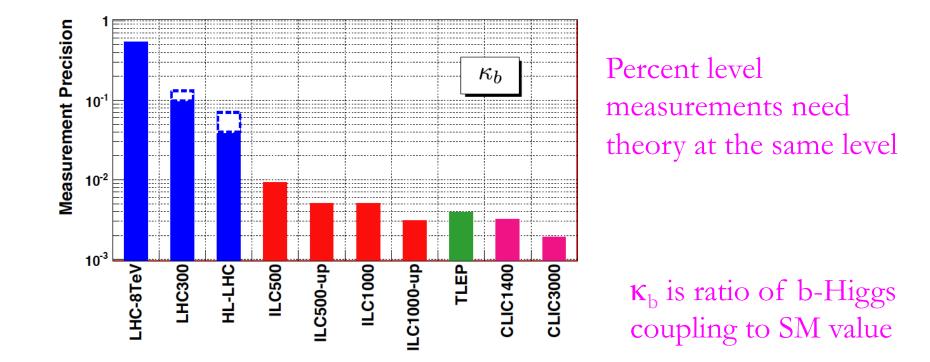
 M_b is pole mass calculated with 1 loop running of $m_b(m_b)$ =4.16 GeV

Uncertainties on Partial Widths

	Γ(MeV)	$\Delta \alpha_{s}$	Δm _b	Δm _c	Theory
H → bb	2.36	-2.3%	+3.3%	0	+2%
		+2.3%	-3.2%	0	-2%
Η → ττ	.259	0	0	0	+2%
		0	0	0	-2%
H → W ⁺ W ⁻	.973	0	0	0	+.5%
		0	0	0	5%

- Parametric and theory errors roughly the same size and added linearly
- Theory uncertainties mostly from estimate of missing 2-loop EW corrections

Errors in BRs are correlated


• Total width found by adding all observed BRs

Decay	Theory Uncertainty	Parametric Uncertainty	Total Uncertainty
			on Branching Ratios
	(%)	(%)	(%)
$H\to\gamma\gamma$	± 2.7	± 2.2	± 4.9
$H \to b\overline{b}$	± 1.5	± 1.9	± 3.3
$H \to \tau^+ \tau^-$	± 3.5	± 2.1	± 5.6
$H \to WW^*$	± 2.0	± 2.2	± 4.1
$H \to ZZ^*$	± 2.0	± 2.2	± 4.2

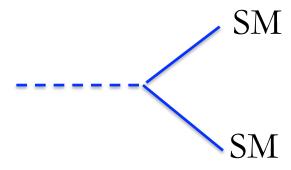
Higgs cross section working group

Projections for Future Colliders

• e^+e^- fits with SM $\Gamma_{\rm H}$ restrictions and 7 parameter fits

How well do we NEED to measure Higgs Couplings?

- LHC measures σ -BR (products of couplings)
- e⁺e⁻ uses recoil method for model independence


0th order answer: We found a new particle which we hypothesize is the quanta of EWSB. We want to measure couplings as precisely as possible

1st order answer: Let's see what kind of deviations we might expect in reasonable scenarios

• To be sensitive to deviation Δ , need to measure to $\Delta/3$ or $\Delta/5$

Example: Additional Higgs Singlet

- Models to explain dark matter, flavor often have more than 1 Higgs boson
 - Simple example: SM Higgs mixed with electroweak singlet, S

Coupling to light Higgs, $h \sim \cos \theta$ Coupling to heavy Higgs, $H \sim \sin \theta$

• Universal rescaling of Higgs couplings, $\kappa_{\rm F} = \kappa_{\rm V} = \cos \theta$

Measure Higgs couplings and/or look for heavy Higgs

Complementarity of Approaches

- Find the heavier Higgs and/or measure deviations in couplings
- What is largest sin θ such that we won't see H (heavier Higgs) at LHC with 100 fb⁻¹?
 - For M_H =1.1 TeV expect 13 signal events, 7 background (S/ \sqrt{B} ~5)
 - To see new physics (without observing H) need (sin θ)² < .12

Target precision:
$$\delta \kappa \sim -\frac{\sin^2 \theta}{2} \sim -6\%$$

[Gupta, Rzehak, Wells, arXiv:1206.3560]

Example: Type II 2HDMs Assume $M_H, M_{H^+}, M_A >> M_Z$ Coupling shifts are typically small: $\delta \kappa_V = -\frac{2M_Z^4 \cot^2 \beta}{M_A^4} \sim -.1\% \cot^2 \beta \left(\frac{600}{M_A}\right)^2$ $\delta \kappa_t = -\frac{2M_Z^2 \cot^2 \beta}{M_A^2} \sim -5\% \cot^2 \beta \left(\frac{600}{M_A}\right)^2$

Target precision: $\delta \kappa < 5\%$

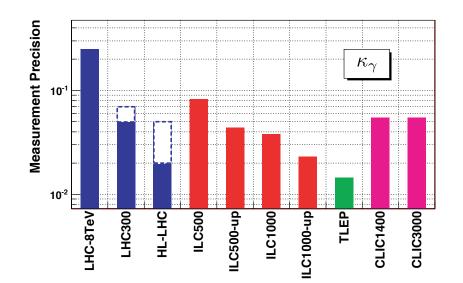
Coupling shifts depend on mass scale of new physics

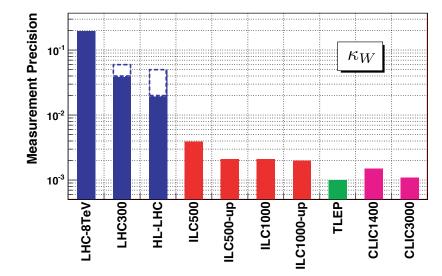
Different models have different patterns of Higgs coupling shifts requires comprehensive set of measurements

* Large effects require small tan β , which is excluded by B physics

S. Dawson

Some Possibilities


- Assume new physics (M) is at 1 TeV:
 - Generic effects on Higgs couplings $\delta\kappa{\sim}(M_Z/M)^2$
 - The pattern of deviations is what pinpoints new physics


Model	δκ _w , δκ _Z	δκ _b	δκ _γ
Singlet Mixing	~-6%	~-6%	~-6%
Decoupling MSSM	~01%	~-2%	4%
Composite	~-3%	-(3-9)%	-9%
Top partner	~-2%	~-2%	~1%

Conclusions

- Can we find new physics by precision measurements of Higgs couplings?
 - To start, we have to get SM theory under better control
- Future e⁺e⁻ measurements will require theory improvements
 - Lattice measurements of m_b and α_s important ingredient

S. Dawson