Quark Flavor Physics from Belle II

Toru lijima Kobayashi-Maskawa Institute & Graduate School of Science Nagoya University

2014.3.7

Lattice QCD Meets Experiment 2014 @ Fermilab

Kobayashi-Maskawa Institute for the Origin of Particles and the Universe

SuperKEKB/Belle II

- New intensity frontier facility
- Target luminosity ; $L_{peak} = 8 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$
 - $L_{int} > 50 \text{ ab}^{-1}$ by early 2020's.

 $\Rightarrow \sim 10^{10} B\overline{B}, \tau + \tau - and charms per year !$

Motivation of Belle II

- Search for New Physics through processes sensitive to presence of virtual heavy particles.
- Complementary to direct search at LHC high P_T programs.

Key Measurements

arXiv:1002.5012

Crv in D /s penguin decays	Observable
	Hadronic l
FCNC	$\Delta S_{\eta' K^0}$
 Tauonic decays 	$\Delta \mathcal{S}_{K_{S}^{0}K_{S}^{0}}$ $\Delta \mathcal{A}_{\pi^{0}K_{S}^{0}}$ $\mathcal{A}_{\phi\phi K^{+}}$ $\phi_{eff}^{eff}(\phi K$
	Radiative/
• LFV τ decays	$\mathcal{S}_{K^0_S\pi^0\gamma}$ $\mathcal{B}(B \to A)$
	$A_{CP}(B)$ C_9 from
	C_{10} from
	C_7/C_9 f R_K
	$\mathcal{B}(B^+ - B^0)$
ENT	$B(B^0 \rightarrow Radiative)$
	$S_{\rho\gamma}$ $\mathcal{B}(B \rightarrow C)$
	Leptonic/s
	$\mathcal{B}(B^+ - \mathcal{B}(B^+ - \mathcal{B}))$
	$\mathcal{B}(B^+ -$
	$\mathcal{B}(B^0 \rightarrow I EV in -$
	$\mathcal{B}(\tau \rightarrow \mu)$
	Blan

Observable	Belle 2006	SuperKl	EKB
	$(\sim 0.5 \text{ ab}^{-1})$	(5 ab^{-1})	(50 ab^{-1})
Hadronic $b \rightarrow s$ transitions			
$\Delta S_{\phi K^0}$	0.22	0.073	0.029
$\Delta S_{\eta' K^0}$	0.11	0.038	0.020
$\Delta S_{K_g^0 K_g^0 K_g^0}$	0.33	0.105	0.037
$\Delta A_{\pi^0 K_S^0}$	0.15	0.072	0.042
$\mathcal{A}_{\phi\phi K^+}$	0.17	0.05	0.014
$\phi_1^{eff}(\phi K_S)$ Dalitz		3.3°	1.5°
Radiative/electroweak $b \rightarrow s$ transitions			
$S_{K^0_{\tau}\pi^0\gamma}$	0.32	0.10	0.03
$\mathcal{B}(\tilde{B} \to X_s \gamma)$	13%	7%	6%
$A_{CP}(B \to X_s \gamma)$	0.058	0.01	0.005
$C_9 \text{ from } \overline{A}_{FB}(B \to K^* \ell^+ \ell^-)$	-	11%	4%
C_{10} from $\overline{A}_{FB}(B \to K^* \ell^+ \ell^-)$	-	13%	4%
C_7/C_9 from $\overline{A}_{FB}(B \to K^* \ell^+ \ell^-)$	-		5%
R _K		0.07	0.02
$\mathcal{B}(B^+ \to K^+ \nu \nu)$	†† < 3 $\mathcal{B}_{\rm SM}$		30%
$\mathcal{B}(B^0 \to K^{*0} \nu \bar{\nu})$	$^{\dagger\dagger} < 40 \ B_{\rm SM}$		35%
Radiative/electroweak $b \rightarrow d$ transitions			
$S_{\rho\gamma}$	-	0.3	0.15
$\mathcal{B}(B \to X_d \gamma)$	-	24% (syst.)	
Leptonic/semileptonic B decays			
$\mathcal{B}(B^+ \to \tau^+ \nu)$	3.5σ	10%	3%
$\mathcal{B}(B^+ \to \mu^+ \nu)$	$^{\dagger\dagger} < 2.4 B_{SM}$	$4.3 \text{ ab}^{-1} \text{ for } 56$	τ discovery
$\mathcal{B}(B^+ \to D \tau \nu)$	-	8%	3%
$\mathcal{B}(B^0 \to D \tau \nu)$	-	30%	10%
LFV in τ decays (U.L. at 90% C.L.)			
$\mathcal{B}(\tau \to \mu \gamma) \ [10^{-9}]$	45	10	5
$\mathcal{B}(au o \mu \eta) \ [10^{-9}]$	65	5	2
$\mathcal{B}(au o \mu \mu \mu) \ [10^{-9}]$	21	3	1

Ultimate measurements down to theory error !

Precision CKM Measurements

- Comparison between
 - tree-based; $|V_{ub}| + \phi_3$
 - loop-based ; ϕ_1 , ϕ_2 , $|V_{td}|$
 - \rightarrow NP in loop

• Belle II is unique for $|V_{cb}|$ and $|V_{ub}|$

Observable	Belle 2006	Superk	(EKB
	$(\sim 0.5 \text{ ab}^{-1})$	(5 ab^{-1})	(50 ab^{-1})
Unitarity triangle parameters	`		
$\sin 2\phi_1$	0.026	0.016	0.012
$\phi_2(\pi\pi)$	11°	10°	3°
$\phi_2 (\rho \pi)$	$68^\circ < \phi_2 < 95^\circ$	3°	1.5°
$\phi_2(\rho\rho)$	$62^\circ < \phi_2 < 107^\circ$	3°	1.5°
ϕ_2 (combined)		2°	$\lesssim 1^{\circ}$
ϕ_3 (D ^(*) K ^(*)) (Dalitz mod. ind.)	20°	7°	2°
$\phi_3 (DK^{(*)}) (ADS+GLW)$	-	16°	5°
$\phi_3 (D^{(*)}\pi)$	-	18°	6°
ϕ_3 (combined)		6°	1.5°
$ V_{ub} $ (inclusive)	6%	5%	3%
$ V_{ub} $ (exclusive)	15%	12% (LQCD)	5% (LQCD)
$^{\dagger\dagger\dagger}\bar{\rho}$	20.0%		3.4%
$^{\dagger\dagger\dagger}\bar{\eta}$	15.7%		1.7%

Uniqueness of Belle II

- Fully reconstructed tags to produce "offline B meson beam".
 - Strong tool for modes with neutrinos

 $B \rightarrow X \mid \nu, X \tau \nu, \tau \nu, K^{(*)} \nu \nu \dots$

- Excellent γ & π^{0} detection capability
 - S (K_S⁰ $\pi^{0}\gamma$), Br(X_S γ), A_{CP}(X_S γ)

Lattice QCD and Belle II

Lattice QCD is important for CKM physics.

USQCD "Lattice QCD at the Intensity Frontier"

http://www.usqcd.org/documents/13flavor.pdf

Quantity	CKM	Present	2007 forecast	Present	2018
	element	expt. error	lattice error	lattice error	lattice error
f_K/f_π	$ V_{us} $	0.2%	0.5%	0.5%	0.15%
$f_+^{K\pi}(0)$	$ V_{us} $	0.2%	_	0.5%	0.2%
f_D	$ V_{cd} $	4.3%	5%	2%	< 1%
f_{D_s}	$ V_{cs} $	2.1%	5%	2%	< 1%
$D \to \pi \ell \nu$	$ V_{cd} $	2.6%	_	4.4%	2%
$D\to K\ell\nu$	$ V_{cs} $	1.1%	_	2.5%	1%
$B\to D^*\ell\nu$	$ V_{cb} $	1.3%	_	1.8%	< 1%
$B\to \pi\ell\nu$	$ V_{ub} $	4.1%	_	8.7%	2%
f_B	$ V_{ub} $	9%	_	2.5%	< 1%
ξ	$\left V_{ts}/V_{td}\right $	0.4%	2-4%	4%	< 1%
ΔM_s	$ V_{ts}V_{tb} ^2$	0.24%	7 - 12%	11%	5%
B_K	$\operatorname{Im}(V_{td}^2)$	0.5%	3.5 - 6%	1.3%	< 1%

• Also for rare decay processes: ex) $B \rightarrow K^{(*)}I^+I^-$, $B \rightarrow K^* \gamma$

|V_{cb}| at present

- Exclusive $|V_{cb}|$ (relevant to lattice QCD) comes mainly from $B^0 \rightarrow D^{*} l^+ \nu$.
- Precision at the level of ~2%, but slight difference from inclusive (~2 σ).

New calculation of F(1) by FNAL/MILC [arXiv:1403.0635]

F(I) = 0.906(4)(I2)

$$\Rightarrow$$
 |Vcb| = (39.04±0.49_{exp}±0.53_{QCD}±0.19_{QED})×10⁻³

Update of $|V_{cb}|$ from the $\bar{B} \to D^* \ell \bar{\nu}$ form factor at zero recoil with three-flavor lattice QCD

Jon A. Bailey,¹ A. Bazavov,² C. Bernard,³ C. M. Bouchard,⁴ C. DeTar,⁵
Daping Du,^{6,7} A. X. El-Khadra,^{6,8} J. Foley,⁵ E. D. Freeland,^{9,10} E. Gámiz,¹¹
Steven Gottlieb,¹² U. M. Heller,¹³ A. S. Kronfeld,^{8,*} J. Laiho,^{14,7,†}
L. Levkova,⁵ P. B. Mackenzie,⁸ E. T. Neil,^{8,15} Si-Wei Qiu,⁵ J. Simone,⁸
R. Sugar,¹⁶ D. Toussaint,¹⁷ R. S. Van de Water,⁸ and Ran Zhou^{12,8}

Abstract

We compute the zero-recoil form factor for the semileptonic decay $\bar{B}^0 \rightarrow D^{*+}\ell^-\bar{\nu}$ (and modes related by isospin and charge conjugation) using lattice QCD with three flavors of sea quarks. We use an improved staggered action for the light valence and sea quarks (the MILC asquad configurations), and the Fermilab action for the heavy quarks. Our calculations incorporate higher statistics, finer lattice spacings, and lighter quark masses than our 2008 work. As a byproduct of tuning the new data set, we obtain the D_s and B_s hyperfine splittings with few-MeV accuracy. For the zero-recoil form factor, we obtain $\mathcal{F}(1) = 0.906(4)(12)$, where the first error is statistical and the second is the sum in quadrature of all systematic errors. With the latest HFAG average of experimental results and a cautious treatment of QED effects, we find $|V_{cb}| = (39.04 \pm 0.49_{expt} \pm 0.53_{QCD} \pm 0.19_{QED}) \times 10^{-3}$. The QCD error is now commensurate with the experimental error.

PACS numbers: 12.38.Gc, 13.20.He, 12.15.Hh

|V_{cb}| Prospect at Belle II

- Tagged measurement of $B \rightarrow D^* Iv$ and $B \rightarrow D Iv$ will yield $|V_{cb}|$ with a similar level of precision.
- → Require good prediction for F(w) and G(w)
 Fit with lattice data at different kinematic points ?
- Improvement in inclusive $|V_{cb}|$ will be far modest.

Expected relative uncertainty in $|V_{cb}|$ from $B \rightarrow D^* Iv$

	Statistical	Systematic	Total	Exp	Theor	y Total
	((reducible, irreducible)				
$ V_{cb} $ exclusive						
$711 { m ~fb^{-1}}$	0.6	(2.8, 1.1)	3.1		1.8	3.6
5 ab^{-1}	0.2	(1.1, 1.1)	1.5		1.5	2.2
50 ab^{-1}	0.1	(0.3, 1.1)	1.2		1.0	1.5

Belle II Internal Note #0021

Tracking eff. (statistics limited) Normalization: N(Y(4S)), f_{\pm}/f_0 , B⁰ lifetime, Br(D* \rightarrow D⁰ π), Br(D⁰ \rightarrow K π) 0

|V_{ub}| at present

• $B \rightarrow \pi I v$ with hadronic tag

[PRD 88, 032005 (2013)]

- 703/fb of Belle Y(4S) data
- Hadronic tag
- Yield extracted from M^2_{miss} in 13 (7) bins of q² for B⁰ $\rightarrow \pi^+ l\nu$ (B⁺ $\rightarrow \pi^0 l\nu$)
- Main systematics: tag calibration

$\frac{X_u}{\pi^+}$	Yield 461±28 230±22	${\cal B}$: 1.49 \pm 0	$\times 10^4$ 0.09 ± 0.07	
Л	230122	0.00 ± 0	1.08 ± 0.04	
Xu	Theory	q^2 , GeV/ c^2	$ V_{ub} imes 1$.0 ³
	LCSR1	< 12	$3.30\pm0.22\pm$	$0.09^{+0.35}_{-0.30}$
π^0	LCSR2	< 16	$3.62\pm0.20\pm$	$0.10^{+0.60}_{-0.40}$
	HPQCD	> 16	$3.45\pm0.31\pm$	$0.09^{+0.58}_{-0.38}$
	FNAL/MILC	> 16	$3.30\pm0.30\pm$	$0.09_{-0.30}^{+0.36}$
	LCSR1	< 12	$3.38\pm0.14\pm$	$0.09^{+0.36}_{-0.32}$
π^+	LCSR2	< 16	3.57 \pm 0.13 \pm	$0.09_{-0.39}^{+0.59}$
	HPQCD	> 16	3.86 \pm 0.23 \pm	$0.10^{+0.66}_{-0.44}$
	FNAL/MILC	> 16	$3.69\pm0.22\pm$	$0.09^{+0.41}_{-0.34}$

V_{ub} Prospect at Belle II

- Belle II should resolve the " $|V_{ub}|$ problem".
- Precision of the tagged $B \rightarrow \pi I v$ will be similar to the untagged one.
 - Can LQCD extend to lower q^2 region ?

• Inclusive $|V_{ub}|$ needs better knowledge on shape function, "cocktail" modelling of $B \rightarrow X_u lv$, and fragmentation.

	Statistical	Systematic	Total Exp	Theory	Total
	(redu	cible, irreducible)			
$ V_{ub} $ exclusive (had. tagged)					
$711 { m ~fb^{-1}}$	5.8	(2.3, 1.0)	6.3	8.7 (2.0)	10.8(6.6)
5 ab^{-1}	2.2	(0.9, 1.0)	2.6	4.0 (2.0)	4.7(3.3)
$50 \ {\rm ab}^{-1}$	0.7	(0.3, 1.0)	1.3	2.0	2.4
$ V_{ub} $ exclusive (untagged)					
$605 {\rm ~fb^{-1}}$	2.7	(2.1, 0.8)	3.5	8.7 (2.0)	9.4 (4.0)
5 ab^{-1}	1.0	(0.8, 0.8)	1.5	4.0 (2.0)	4.2(2.5)
$50 \ {\rm ab}^{-1}$	0.3	(0.3, 0.8)	0.9	2.0	2.2
$ V_{ub} $ inclusive					
$605 \text{ fb}^{-1} \text{ (old } B \text{ tag)}$	4.5	(3.4, 2.3)	6.0	2.5	6.5
5 ab^{-1}	1.1	(1.2, 2.3)	2.8	2.5	3.8
50 ab^{-1}	0.4	(0.4, 2.3)	2.4	2.5	3.4

Belle II Internal Note #0021

Theory error for Inclusive $|V_{ub}|$ uncertainty (2.5% in GGOU 4.5% in BLNP approach)

$B \to \tau \, \nu$

Proceed via W-exchange, helicity suppressed.

- Parameters
 - B decay constant: $f_B = 191 \pm 9 \text{ MeV}$ HPQCD, PDG2012
 - CKM matrix: $|V_{ub}| = (4.15 \pm 0.49) \times 10^{-3}$ b $\rightarrow u/v$, PDG2012

 $Br_{SM}(\tau v) = (1.20 \pm 0.25) \times 10^{-4}$

$B \rightarrow \tau \nu$

Both Belle and BaBar provide results with hadronic and semileptonic tags.

Belle hadronic tag w/ 772M BB (full) data PRLII0, 131801 (2013)

Constraint on Charged Higgs from $B \rightarrow \tau \nu$

Assume Type-II 2HDM.

$$\mathcal{B}(B \to \tau \nu) = \mathcal{B}(B \to \tau \nu)_{\rm SM} \times r_H$$
$$r_H = \left(1 - \frac{m_B^2}{m_H^2} \tan^2 \beta\right)^2$$

• Use

- $B(B \rightarrow \tau \nu) = (1.15 \pm 0.23) \times 10^{-4}$
- $B(B \rightarrow \tau \ \nu)_{SM} = (I.II \pm 0.28) \times I0^{-4}$ where $B(B \rightarrow \tau \ \nu)_{SM}$ is obtained from
 - $f_B = (191\pm9) \text{ MeV} (HPQCD, PDG2012)$
 - $|V_{ub}| = (4.15 \pm 0.49) \times 10^{-3} (PDG, PDG2012)$

Stringent constraint on tan β and m_H obtained.

Note: constraint strongly depends on f_B and $|V_{ub}|$.

Prospect at Belle II

- 7GeV e⁻ ×4GeV e^{+,}
- $L_{peak} = 8 \times 10^{35} cm^{-2} s^{-1}$
- $L_{int} = 50ab^{-1}$
- $B \rightarrow \tau v$
 - Precision ~ a few %
 - Need better precision for $f_B |V_{ub}|$.
- $B \rightarrow \mu \nu$, $e\nu$
 - 5 σ observation expected for $B(B \rightarrow \mu \ \nu)_{SM}$ at ~10 ab⁻¹.
 - O(10⁻⁸) sensitivity at 50 ab⁻¹.
 - Interesting to compare w/ $B \rightarrow \tau v$

2-parameter nonuniversal Higgs model H. Baer, V. Barger, and A. Mustafayev, PRD85, 075010

Prospect for D Leptonic Decays

Total

Important for both testing the SM and search for NP.

Systematic

Belle developed the method to tag D

Statistical

$e^+e^- ightarrow c\overline{c} ightarrow \overline{D}_{ m tag} X_{ m frag} D_{ m res}^{(*)}$) coil
Gev ² /c ⁴)	
	I.I.
M_{miss}^{2} M_{trag}^{2} M_{t	0.6 eV²/c⁴)

Belle II Internal Note #0021

Irreducible error source

- $Br(\tau \rightarrow X)$, $Br(D_s)$, D^0/D^+ fraction in $c\overline{c}$ fragmentation
- Data-MC difference in E_{FCL} (residual energy recorded in EM calorimeter)

		reducible	irreducible	
$\mathcal{B}(D_s \to \mu \nu)$				
$913 { m ~fb^{-1}}$	5.3%	0%	3.8%	6.5%
5 ab^{-1}	2.3%	1.6%	0%- $0.9%$	2.9%
50 ab^{-1}	0.7%	0.5%	0%- $0.9%$	0.9%- $1.3%$
$\mathcal{B}(D_s \to \tau \nu)$				
$913 { m ~fb}^{-1}$	3.7%	4.4%	3.5%	6.8%
5 ab^{-1}	1.6%	1.9%- $2.3%$	3.5%-2.2%	3.5%- $4.3%$
50 ab^{-1}	0.5%	0.6%-0.7%	3.5%- $2.2%$	2.3%- $3.6%$

Hadron Spectroscopy

- Many charmonium-like and also bottomonium-like hadrons are observed.
- Many of them do not fit to the mass spectra predicted by the quark model.

Magnets have been installed

20

Belle II Detector

- □ Deal with higher background (10-20×), radiation damage, higher occupancy, higher event rates (L1 trigg. 0.5→30 kHz)
- Improved performance and hermeticity

CsI(TI) RPC μ & K_L counter: waveform sampling scintillator + Si-PM electronics, for end-caps + inner barrel Pure Csl for endcaps 4 layers DS Si vertex detector Belle II \rightarrow 2 layers PXD (DEPFET) + 4 layers DSSD Time-of-Flight, Aerogel Cherenkov Counter \rightarrow Time-of-Propagation (barrel), prox. focusing Central Drift Chamber: Aerogel RICH (forward) smaller cell size, long lever arm

International collaboration from: Saudi Arabia, Australia, Austria, Canada, China, Czech, Germany, India, Italy, Japan, Korea, Malaysia, Mexico, Viet Nam, Poland, Russia, Slovenia, Spain, Taiwan, Thailand, Turkey, USA, Ukraine (Recently joined)

Belle II Progress

Construction & Commissioning Schedule

Calendar	2013	2014	2015	2016	2017
	fabrication	& test of compo	onents		
	installation,	assembly and s	set-up w/	o Belle II detect	tor
SuperKEKBMai n Ring	final asser	nbly, RF-conditi	oning	w/o QCS	
	QCS-L	QCS-R			
SuperKEKBDa	fabrication & compone	test of nts	Phase-1	Phase-2	Physics Run
mping Ring	installatio	n, assembly an set-up	d		
Belle II	B-KLM	E-KLM A	RICH	w/ Belle <u>except</u>	II detector <u>for VXD</u>
Integration		ECL	TOP CDC	VXD	

Luminosity Projection

50/ab around 2024

Calendar Year

Summary

- The Belle II experiment at SuperKEKB aims to find NP with ultimate precision measurement (a few %, typically) of heavy flavor decays (O(10¹⁰) samples / year).
- Lattice QCD provides crucial inputs to extract physics.
 - Need precise enough calculations timely !
- We will start
 - SuperKEKB commissioning in 2015
 - Belle II physics run in 2016

Let's Keep in Touch !

Backup

SuperKEKB Accelerator

Low emittance ("nano-beam") scheme employed

proposed by P.Raimondi

Machine parameters

	SuperKEKB LER/HER	KEKB LER/HER	
E(GeV)	4.0/7.0	3.5/8.0	
ε _× (nm)	3.2/4.6	18/24	
βyat IP(mm)	0.27/0.30	5.9/5.9	K
βx at IP(mm)	32/25	120/120	
Half crossing angle(mrad)	41.5		
I(A)	3.6/2.6	1.6/1.2	*
Lifetime	~10min	130min/ 200min	
L(cm ⁻² s ⁻¹)	80×10 ³⁴	2. I × I 0 ³⁴	

$B \rightarrow \tau \nu$

 Charged Higgs exchange interferes with the helicity suppressed W-exchange.

Belle II Collaboration

- 23 countries, 95 institutes, 599 collaborators.
 - 13 Institutes / 69 members from US
 - Recent new countries: Canada (4/17), Italy (9/48), Mexico (4/6)

Systematic error for $B \rightarrow D^* I v$

TABLE VIII: Systematic errors on $|V_{cb}|$, with the full Belle 711 fb⁻¹ data sample, in percent.

	Error on $ V_{cb} $		
Fast track efficiency	2.3		
Slow track efficiency	0.8		
$ \rho_{\pi_s} $ stability	0.1		
Lepton idenficiation	1.1		
Norm - D^{**}	0.1		
Norm - Signal Corr.	0.1		
Norm - Uncorr	0.1		
Norm - Fake ℓ	0.0		
Norm - Fake D^*	0.0		
Norm - Continuum	0.0		
D^{**} composition	0.3		
D^{**} shape	0.1		
$N(\Upsilon(4S))$	0.7(0.7)		
f_{+-}/f_{00}	0.7(0.4)		
B^0 lifetime	0.3(0.2)		
$\mathcal{B}(D^* \to D^0 \pi_{\rm s})$	0.4(0.4)		
$\mathcal{B}(D^0 \to K\pi)$	0.6~(0.6)		
Systematic Error (red., irred.)	3.0(2.8, 1.1)		

Belle II internal note #0021

Systematic error for $B \rightarrow \pi I \nu$

TABLE XI: Systematic errors on the branching fractions of $B \to \pi \ell \nu$ in hadronic tagged and untagged Belle analyses with 711 fb⁻¹ and 605 fb⁻¹ data samples, respectively. The precision limit for some systematics is given in brackets.

Source	Hadronic tag	Untagged
	Error (Limit)	Error (Limit)
Track reconstruction	0.4	2.0
Hadron identification	_	1.3
Lepton identification	1.0	2.4
Kaon Veto	0.9	
Continuum description	1.0	1.8
Tag Calibration & $N(B\bar{B})$	4.5(2.0)	2.3 (1.0)
$X_u \ell \nu$ Cross Feed	0.9	0.5~(0.5)
$X_c \ell \nu$ Background	_	0.2(0.2)
Form Factor Shapes(PDF)	1.1	1.0(1.0)
Form Factor Background(PDF)	_	0.4(0.4)
Systematic error (red., irred.)	5.0(4.6, 2.0)	4.5 (4.2, 1.6)

Belle II internal note #0021

Systematic error for $D \rightarrow I \nu$, $\tau \nu$

Source	$\mu\nu$ [%]	$\tau \nu ~[\%]$
Normalization	± 2.1	± 2.1
Tag bias	± 1.4	± 1.4
Tracking	± 0.4	± 0.4
Particle ID	± 2.0	± 1.7
Efficiency	± 1.8	± 0.8
Fit model	± 0.2	$^{+3.3}_{-2.9}$
D_s background	± 0.8	± 2.8
τ cross-feed	-	± 0.9
$\mathcal{B}(\tau \to X)$	-	± 0.2
Total syst.	± 3.8	$^{+5.4}_{-5.2}$

TABLE XV: Summary of relative systematic uncertainties for the branching fraction measurements of leptonic D_s decays from [45].

Belle II internal note #0021

Charm Projections

Observables	Belle	Belle II		\mathcal{L}_s
	(2014)	5 ab^{-1}	50 ab^{-1}	$[ab^{-1}]$
$\mathcal{B}(D_s \to \mu \nu)$	$5.31 \times 10^{-3} (1 \pm 0.053 \pm 0.038)$	$\pm 2.9\%$	$\pm (0.9\%$ -1.3%)	> 50
$\mathcal{B}(D_s \to \tau \nu)$	$5.70 \times 10^{-3} (1 \pm 0.037 \pm 0.054)$	$\pm(3.5\%$ -4.3%)	$\pm (2.3\%$ -3.6%)	2.5 - 5
y_{CP} [10 ⁻²]	$1.11 \pm 0.22 \pm 0.11$	$\pm(0.11-0.13)$	$\pm (0.05-0.08)$	5 - 7.5
$A_{\Gamma} [10^{-2}]$	$-0.03 \pm 0.20 \pm 0.08$	± 0.10	$\pm (0.03-0.05)$	6.5 - 8.5
$A_{CP}^{K^+K^-}$ [10 ⁻²]	$-0.32 \pm 0.21 \pm 0.09$	± 0.11	± 0.06	15
$A_{CP}^{\pi^+\pi^-}$ [10 ⁻²]	$0.55 \pm 0.36 \pm 0.09$	± 0.17	± 0.06	> 50
$A_{CP}^{\phi\gamma}$ [10 ⁻²]	± 5.6	± 2.5	±0.8	> 50

- Using Belle results and a rough extrapolation to 50 ab⁻¹:
 - LHCb dominates A_{Γ} and ΔA_{CP} . Bellell competitive in x'^2 , y' and y_{CP} .
- Belle II favourable in A_{CP} due to symmetric D-meson production; sensitivity would reach 0.03% level.
- Rare modes: ργ, Φγ @ 1% expectation (NP up to 10%)

P. Urquijo @ Belle PAC, Feb.2014