The axial-vector form factor in QCD

RICHARD HILL

Lattice meets experiment

7 March 2014

Based on work with
A. Kronfeld, A. Meyer
B. Bhattacharya, G. Paz,
G. Lee, Z. Jiang

National Institute of

Outline

- nuclear physics and philosophy
- math
- particle (nucleon) physics
- summary

Nuclear physics and philosophy

neutrino-nucleus scattering involves three hard problems
$\sigma \sim$ flux x |nucleon amplitude| ${ }^{2} \times$ nuclear effects

~measurement

~model

Degenerate uncertainties. E.g., charged current quasi-elastic scattering (CCQE) used as flux monitor, to determine nucleon axial-vector form factor, and to constrain nuclear modeling
would like to see this as
$\sigma \sim$ flux x |nucleon amplitude| ${ }^{2} \times$ nuclear effects

~measurement

~lattice

\sim direct experimental constraints

- some progress and many proposals experimentally on constraining nuclear models
- relevant accuracy of nucleon amplitudes within range of lattice simulations
these problems are hard, but important
scattering of $\sim \mathrm{GeV}$ leptons on a nucleus far from optimal theoretically
- above nuclear, chiral perturbation theory scales
- below scale of QCD perturbation theory, inclusive observables

Driven to this regime by several considerations

- neutrino oscillations for hierarchy and CP violation

$$
P\left(\nu \rightarrow \nu^{\prime}\right)=\sin ^{2} 2 \theta \sin ^{2}\left[1.27 \Delta m^{2}\left(\mathrm{eV}^{2}\right) \frac{L(\mathrm{~km})}{E(\mathrm{GeV})}\right]
$$

- proton decay and related atmospheric backgrounds

$$
m_{p} \sim \mathrm{GeV}
$$

cracks in the foundation
the problems of the nucleon-level amplitude and nuclear modeling have been dominated by default ansatze:

Dipole ansatz [e.g., Lewellyn-Smith, Phys.Rept. 3 (1972) 261-379]

- analyticity + lattice QCD: model independent determination (focus of this talk)

Relativistic Fermi Gas
[R.A. Smith and E.J. Moniz, Nucl. Phys. B43, 605(I972), BIOI, 547(E) (I975)]
(RFG) ansatz

- multiple experimental programs proposed to constrain the hadronic final state, e.g., 3 at most recent Fermilab PAC
- significant nuclear modeling, MC generator efforts to improve upon RFG
cracks in the foundation
the problems of the nucleon-level amplitude and nuclear modeling have been dominated by default ansatze:

Dipole ansatz

- analyticity + lattice QCD: model independent determination (focus of this talk)

Relativistic Fermi Gas
(RFG) ansatz

- multiple experimental programs proposed to constrain the hadronic final state, e.g., 3 at most recent Fermilab PAC
- significant nuclear modeling, MC generator efforts to improve upon RFG

The actors:

$\bar{u}^{(p)}\left(p^{\prime}\right) \Gamma^{\mu} u^{(n)}(p)=\left\langle p\left(p^{\prime}\right)\right| J_{W}^{+\mu}|n(p)\rangle$

suppressed by lepton mass, and constrained by PCAC
Dipole ansatz [e.g., Lewellyn-Smith, Phys.Rept. 3 (1972) 261-379]

$$
F_{A}\left(q^{2}\right)=\frac{1}{\pi} \int_{t_{\text {cut }}}^{\infty} d t \frac{\operatorname{Im} F_{A}(t+i 0)}{t-q^{2}} \rightarrow \frac{g_{A}}{\left(1-\frac{q^{2}}{m_{A}^{2}}\right)^{2}}
$$

Agrees with asymptotic $\sim 1 / Q^{4}$ behavior, but physically relevant region is far from asymptotic

[MINERvA, Phys.Rev.Lett. I I I (20I3) 022502]

Nuclear model
$\sigma_{\text {nuclear }}=\frac{G_{F}^{2}}{16\left|k \cdot p_{T}\right|} \int \frac{d^{3} k^{\prime}}{(2 \pi)^{3} 2 E_{k^{\prime}}} L^{\mu \nu} W_{\mu \nu}$,

Relativistic Fermi gas

$$
\begin{array}{r}
W_{\mu \nu} \equiv \int d^{3} p f\left(\boldsymbol{p}, q^{0}, \boldsymbol{q}\right) H_{\mu \nu}\left(\epsilon_{\boldsymbol{p}}, \boldsymbol{p} ; q^{0}, \boldsymbol{q}\right) \\
H_{\mu \nu}=\operatorname{Tr}\left[\left(\not{ }^{\prime}+m_{p}\right) \Gamma_{\mu}(q)\left(\not p+m_{n}\right) \bar{\Gamma}_{\nu}(q)\right] \\
f\left(\boldsymbol{p}, q^{0}, \boldsymbol{q}\right)=\frac{m_{T} V}{4 \pi^{2}} n_{i}(\boldsymbol{p})\left[1-n_{f}(\boldsymbol{p}+\boldsymbol{q})\right] \frac{\delta\left(\epsilon_{p}-\epsilon_{p+\boldsymbol{q}}^{\prime}+q^{0}\right)}{\epsilon_{\boldsymbol{p}} \epsilon_{p+\boldsymbol{q}}^{\prime}} \\
V=\frac{3 \pi^{2} A}{2 p_{F}^{3}} \quad n_{i}(\boldsymbol{p})=\theta\left(p_{F}-|\boldsymbol{p}|\right), \quad n_{f}\left(\boldsymbol{p}^{\prime}\right)=\theta\left(p_{F}-\left|\boldsymbol{p}^{\prime}\right|\right)
\end{array}
$$

For the purposes of this talk, view nucleus as part of the detector (experiments are needed to calibrate)

Symptom of oversimplified form factor and nuclear models

[MINERvA, Phys.Rev.Lett.
I I I (20I3) 022502]

- Discrepancies (~ 3 sigma) in CCQE measurements
- Unclear whether due to nuclear effects or nucleon-level amplitudes

Difficult measurements, but
your favorite signal

- (rhetorical) question: would we believe a collider measurement of [X] if it required a different value of mw , or invoked a definition of mw that could not be compared to other sources?

Math

Taylor expansions and fitting

Suppose we are given a set of data with errors and wish to determine derived quantities

In general, QM observable given by

$$
\sigma_{i} \sim\left|A\left(x_{i}\right)\right|^{2}
$$

Let us Taylor expand (e.g. $\sigma=x$. .., $A=f . f ., ~ x=q^{2}$)

$$
A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots
$$

Now consider (e.g.A real)

$$
\chi^{2}=\sum_{i} \frac{\left[\sigma_{i}-\left[A\left(x_{i}\right)\right]^{2}\right]^{2}}{d \sigma_{i}^{2}}=\text { fourth order polynomial in } \mathrm{a}_{\mathrm{i}}
$$

In finding minimum and $\Delta \mathrm{X}^{2}=\mathrm{I}$ intervals, etc., important in practice to know whether X^{2} function is convex: is a local minimum necessarily a global minimum?
"Virtually nothing is known about about finding global extrema in general..." Press et.al., Numerical Recipes,

Unfortunately, determining whether a general fourthorder polynomial is convex is NP hard

Fortunately, our fourth-order polynomial is special, and can be shown to obey "non-perverse convexity"

$$
3\left[A\left(x_{i}\right)\right]^{2}>\sigma_{i} \Longrightarrow \mathrm{X}^{2} \text { is convex }
$$

i.e., unless errors are $\mathrm{O}(\mathrm{I}), \mathrm{X}^{2}$ is convex and we may simply and efficiently "roll to the minimum"

proof (sketch):

$$
\begin{aligned}
& M_{I}\left(a_{i}\right)=\text { convex } \Rightarrow \sum_{I} M_{I}\left(a_{i}\right)=\text { convex } \\
& M\left(a_{i}\right)=\text { convex } \Leftrightarrow \frac{\partial^{2} M}{\partial a_{i} \partial a_{j}}=\text { positive definite } \\
& M\left(a_{i}\right)=\left(\sigma-\left[\sum_{i} a_{i} x^{i}\right]^{2}\right)^{2} \\
& \Rightarrow \frac{\partial^{2} M}{\partial a_{i} \partial a_{j}}=4 x^{i+j}\left[3\left(\sum_{k} a_{k} x^{k}\right)^{2}-\sigma\right] \\
& \frac{\partial^{2} M}{\partial a_{i} \partial a_{j}} \propto\left(\begin{array}{cccc}
1 & x & x^{2} & \cdots \\
x & x^{2} & x^{3} & \cdots \\
x^{2} & x^{3} & x^{4} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)=\left(\begin{array}{c}
1 \\
x \\
x^{2} \\
\vdots
\end{array}\right)\left(\begin{array}{lll}
1 & x & x^{2} \cdots
\end{array}\right)=L L^{T} \\
& \lambda=v^{T} \frac{\partial^{2} M}{\partial a_{i} \partial a_{j}} v=\left(L^{T} v\right)^{2} \geq 0
\end{aligned}
$$

Unfortunately, a simple Taylor expansion of hadronic amplitudes has finite (small) radius of convergence

Fortunately, the analytic structure of amplitudes allows us to "resum" by change of variables into expansion covering the entire physical region

$$
z\left(t, t_{\mathrm{cut}}, t_{0}\right)=\frac{\sqrt{t_{\mathrm{cut}}-t}-\sqrt{t_{\mathrm{cut}}-t_{0}}}{\sqrt{t_{\mathrm{cut}}-t}+\sqrt{t_{\mathrm{cut}}-t_{0}}}
$$

$9 m_{\pi}{ }^{2}$ (isoscalar channel)
point mapping to $z=0$
(scheme choice)

Particle (nucleon) physics

- basic idea: small expansion parameter, z, with order unity expansion coefficients

$$
F\left(q^{2}\right)=\sum_{n=0}^{\infty} a_{n} z\left(q^{2}\right)^{n}
$$

- in fact, a little better, e.g.

$$
\sum_{n=0}^{\infty} a_{n}^{2}<\infty \quad \Rightarrow \quad a_{\mathrm{n}} \text { smaller for large } \mathrm{n}
$$

The z expansion has become a standard tool for meson transitions (e.g. |Vub| determinations in $B \rightarrow \pi \mid V$)

[Bourrely et al 1981]
[Boyd, Grinstein, Lebed I995]
[Lellouch et al 1996]
[Arnesen et al 2005]
[Becher, Hill 2006]

Note that the real power of the expansion is based on observation of $\mathrm{O}(\mathrm{I})$ coefficients, not unitarity bounds. E.g., for $K \rightarrow \pi$ vector form factor, can measure bound: unitarity bound on A (require exclusive rate< inclusive rate)

$$
A=\sqrt{\sum_{k} \frac{a_{k}^{2}}{a_{0}^{2}}}
$$

\Rightarrow Unitarity bound either uncertain (low Q) or overestimates bound (high Q)
For nucleon form factors, unitarity even less relevant, as dominant dispersive contribution to form factors is from states below NN threshold

At least until very recently, curvature never measured in any meson transition form factor

Process	CKM element	$\|z\|_{\max }$
$\pi^{+} \rightarrow \pi^{0}$	$V_{u d}$	3.5×10^{-5}
$B \rightarrow D$	$V_{c b}$	0.032
$K \rightarrow \pi$	$V_{u s}$	0.047
$D \rightarrow K$	$V_{c s}$	0.051
$D \rightarrow \pi$	$V_{c d}$	0.17
$B \rightarrow \pi$	$V_{u b}$	0.28

Process	a_{1} / a_{0}	Reference
$B \rightarrow D$	-2.6 ± 2.3	$[13]$
$K^{+} \rightarrow \pi^{0}$	-0.2 ± 0.2	$[14]$
$K_{L} \rightarrow \pi^{ \pm}$	-0.5 ± 0.2	$[15]$
	0.0 ± 0.3	$[16]$
$D \rightarrow K$	-0.2 ± 0.2	$[17]$
	$-2.7 \pm 0.5 \pm 0.4$	$[18]$
	$-2.2 \pm 0.4 \pm 0.4$	$[19]$
$D \rightarrow \pi$	$-3.2 \pm 0.5 \pm 0.2$	$[20]$
	$-2.3 \pm 0.7 \pm 1.3$	$[18]$
$B \rightarrow \pi$	$-1.6 \pm 0.5 \pm 1.0$	$[20]$
	$-1.3 \pm 0.6 \pm 2.3$	$[21]$
	$-1.9 \pm 0.3 \pm 1.1$	$[12]$
	$-1.3 \pm 0.8 \pm 2.2$	$[22]$

[RJH, eConf C060409 (2006) 027]
First hints perhaps seen in $B \rightarrow \pi$ (to be expected, cf. above)
[BaBar, Phys.Rev. D83 (201 I) 0520II]

Bringing the z expansion into the domain of baryon form factors

- study of vector dominance models, πT approximation to isovector form factors: expect $O(I)$ is really order I (e.g. not IO)

- more concretely, fits to data yield
[Bhattacharya, Hill, Paz, Phys.Rev. D84 (201I) 073006]

$$
a_{0} \equiv 1, \quad a_{1}=-1.01(6), \quad a_{2}=-1.4_{-0.7}^{+1.1}, \quad a_{3}=2_{-6}^{+2}
$$

- to assign error, constrain coefficients, e.g. <5 (conservative) or <10 (very conservative)
- as for mesons, also for nucleons: curvature as-yet unmeasured (so in practice, shape is determined by one number)

Parameter	Value
$\left\|V_{u d}\right\|$	0.9742
μ_{p}	2.793
μ_{n}	-1.913
m_{μ}	0.1057 GeV
G_{F}	$1.166 \times 10^{-5} \mathrm{GeV}^{-2}$
m_{N}	0.9389 GeV
$F_{A}(0)$	-1.269
ϵ_{b}	0.025 GeV
p_{F}	0.220 GeV

Fit to double differential CCQE data from MiniBooNE

Assume Relativistic Fermi Gas nuclear model [Smith and Moniz (1972)]

[MiniBooNE, PRD8I, 092005 (20I0)]

Results for axial form factor:

$$
F_{A}\left(q^{2}\right)=F_{A}(0)\left[1+\frac{2}{m_{A}^{2}} q^{2}+\ldots\right] \Longrightarrow m_{A} \equiv \sqrt{\frac{2 F_{A}(0)}{F_{A}^{\prime}(0)}}
$$

$$
m_{A}=0.85_{-0.07}^{+0.22} \pm 0.09 \mathrm{GeV} \quad \text { (neutrino scattering) }
$$

$m_{A}^{\text {dipole }}=1.29 \pm 0.05 \mathrm{GeV}$

$$
a_{0}=F_{A}(0)=-1.269, \quad a_{1}=2.9_{-1.0}^{+1.1}, \quad a_{2}=-8_{-3}^{+6}
$$

- again, no measurable curvature (in z)

Revisit pion electroproduction

Experimental anomalies are between
a) high and low energy neutrino data
b) neutrino data and electroproduction data

$$
m_{A}=0.92_{-0.13}^{+0.12} \pm 0.08 \mathrm{GeV} \quad \text { (electroproduction) }
$$

- World average strongly affected by dipole assumption
- Extrapolation beyond chiral regime
- Naive/absent treatment of radiative corrections

Summary

- degeneracy between flux, nucleon-level, and nuclear uncertainties in neutrino-nucleus scattering and related observables
- caution warranted. cf. "proton radius puzzle" in e.m. Here radius determined to $\sim 2 \%$ by e-p scattering. Similar uncertainty often claimed for axial radius
- z expansion applied to nucleon f.f.s (implemented in GENIE: A. Meyer)
- lattice poised to make critical contribution at nucleon level, breaking the above degeneracy
- experimental input important to constrain nuclear models

