Introduction to Lattice QCD

Understanding Uncertainty Budgets

Andreas Kronfeld

Lattice Meets Experiment Fermilab March 7–8, 2014

1

QCD Hadron Spectrum

 $\pi...\Omega$: BMW, MILC, PACS-CS, QCDSF; η - η ': RBC, UKQCD, Hadron Spectrum (ω); D, B: Fermilab, HPQCD, Mohler&Woloshyn

Quark Flavor Physics: Then and Now

Quantity	CKM element	Present expt. error	2007 forecast lattice error	Present lattice error	2018 lattice error
f_K/f_{π}	$ V_{us} $	0.2%	0.5%	0.5%	0.15%
$f_+^{K\pi}(0)$	$ V_{us} $	0.2%	_	0.5%	0.2%
f_D	$ V_{cd} $	4.3%	5%	2%	< 1%
f_{D_s}	$ V_{cs} $	2.1%	5%	2%	< 1%
$D ightarrow \pi \ell u$	$ V_{cd} $	2.6%	_	4.4%	2%
$D ightarrow K \ell v$	$ V_{cs} $	1.1%	_	2.5%	1%
$B ightarrow D^* \ell u$	$ V_{cb} $	1.3%	_	1.8%	< 1%
$B ightarrow \pi \ell u$	$ V_{ub} $	4.1%	_	8.7%	2%
f_B	$ V_{ub} $	9%	_	2.5%	< 1%
ξ	$ V_{ts}/V_{td} $	0.4%	2-4%	4%	< 1%
ΔM_s	$ V_{ts}V_{tb} ^2$	0.24%	7-12%	11%	5%
B_K	$\operatorname{Im}(V_{td}^2)$	0.5%	3.5-6%	1.3%	< 1%

Quantum Mechanics with Path Integrals

• Heisenberg & Pauli [Z. Phys. 56, 1 (1929)] used a spatial lattice and took a limit to set up canonical commutation relations for QED:

$$[p_i,q_j] = i\hbar\delta_{ij} \to [p_x,q_y] = i\hbar\delta(x-y)$$

• Feynman showed that QM amplitudes can be expressed as "path" integrals [RMP 20, 367 (1948)]:

$$\langle x(t)|x(0)\rangle = \lim_{N\to\infty} \int \prod_{i=1}^{N-1} dx_i e^{iSt/N}$$

 Kenneth Wilson combined the two technical steps with (his) renormalization theory to define gauge theories, such as QCD, on a space-time lattice [PRD 10, 2445 (1974)]. This is lattice gauge theory.

Lattice Field Theory =: Quantum Field Theory

- Infinite continuum: uncountably many d.o.f.
- Infinite lattice: countably many; used to define quantum field theory.
- Finite lattice: can evaluate integrals on a computer; dimension $\sim 10^{8.}$
- Monte Carlo with importance sampling:

$$\langle \bullet \rangle = \frac{1}{Z} \int \mathcal{D}U \ \mathcal{D}\Psi \ \mathcal{D}\overline{\Psi} \ \exp(-S) [\bullet]$$

= $\frac{1}{Z} \int \mathcal{D}U \det(\mathcal{D}+m) \exp(-S) [\bullet']$

 $L = N_{S}a$

Lattice Field Theory =: Quantum Field Theory

- Infinite continuum: uncountably many d.o.f.
- Infinite lattice: countably many; used to define quantum field theory.
- Finite lattice: can evaluate integrals on a computer; dimension $\sim 10^{8.}$
- Monte Carlo with importance sampling:

$$\langle \bullet \rangle = \frac{1}{Z} \int \mathcal{D}U \underbrace{\mathcal{D}\psi \, \mathcal{D}\overline{\psi}}_{\text{hand}} \exp(-S) \left[\bullet\right]$$

$$= \frac{1}{Z} \int \mathcal{D}U \underbrace{\det(\mathcal{D}+m)}_{\det(\mathcal{D}+m)} \exp(-S) \left[\bullet'\right]$$

 $L = N_{S}a$

Lattice Field Theory =: Quantum Field Theory

- Infinite continuum: uncountably many d.o.f.
- Infinite lattice: countably many; used to define quantum field theory.
- Finite lattice: can evaluate integrals on a computer; dimension $\sim 10^{8.}$
- Monte Carlo with importance sampling:

 $L = N_{S}a$

n-Point Functions Yield Masses & Matrix Elements

• Two-point functions for masses $\pi(t) = \bar{\psi}_u \gamma^5 \psi_d$:

$$G(t) = \langle \pi(t)\pi^{\dagger}(0) \rangle = \sum_{n} |\langle 0|\hat{\pi}|\pi_{n}\rangle|^{2} \exp(-m_{\pi_{n}}t)$$

• Two-point functions for decay constants:

$$\langle J(t)\pi^{\dagger}(0)\rangle = \sum_{n} \langle 0|\hat{J}|\pi_{n}\rangle \langle \pi_{n}|\hat{\pi}^{\dagger}|0\rangle \exp(-m_{\pi_{n}}t)$$

• Three-point functions for form factors, mixing:

$$\langle \pi(t)J(u)B^{\dagger}(0)\rangle = \sum_{mn} \langle 0|\hat{\pi}|\pi_{m}\rangle \langle \pi_{n}|\hat{J}|B_{m}\rangle \langle B_{m}|\hat{B}^{\dagger}|0\rangle \\ \times \exp[-m_{\pi_{n}}(t-u)-m_{B_{m}}u]$$

Kinds of Uncertainty

- Quantitative:
 - based on "theorems" and derived from (numerical) data;
- Semi-quantitative:
 - based on "theorems" but insufficient data to make robust estimates;
- Non-quantitative:
 - error exists but estimation is mostly subjective (or, hence, omitted);
- Sociological.

Semi-quantitative Errors

Errors Estimated Semi-quantitatively

- Sometimes the (numerical) data are insufficient to estimate robustly an uncertainty:
 - the statistical quality is not good enough;
 - the range of parameters is not wide enough;
 - try this, that, and the other fit; cogitate; repeat.
- These cases are a limiting case of errors estimated *quantitatively*, so are discussed later in the talk.

Errors Estimated Semi-quantitatively 2

- Perturbative matching (a class of discretization effect):
 - estimate error from truncating PT with the same "reliability" as in continuum pQCD;
 - multi-loop perturbative lattice gauge theory is daunting.
 - nonperturbative matching, where feasible, fixes this.
- Heavy-quark discretization effects:
 - theory says $\alpha_s^{l+1}b_i^{[l+1]}(am_q) a^n \langle O_i \rangle$, with $a^n \langle O_i \rangle \sim (a\Lambda)^n$;
 - for each LHQ action, know asymptotics of $b_i(am_q)$, but that's it.

Quantitative Errors: Statistics

Monte Carlo Integration with Importance Sampling

• Estimate integral as a sum over randomly chosen configurations of U:

$$\langle \bullet \rangle = \frac{1}{Z} \int \mathcal{D}U \det(\not\!\!D + m) \exp(-S) \left[\bullet'\right]$$

$$\approx \frac{1}{C} \sum_{c=0}^{C-1} \bullet'[U^{(c)}]$$

where $\{U^{(c)}\}\$ is distributed with probability density $\det(D + m) \exp(-S)$; often called "simulation," although this may be an abuse of language.

- Sum converges to desired result as ensemble size $C \rightarrow \infty$.
- With $C < \infty$, statistical errors and correlations between, say, G(t) and G(t+a).

Central Limit Theorem

- Thought simulation: generate many ensembles of size *C*. Observables $\langle \bullet \rangle$ are Gaussian-distributed around true value, with $\langle \sigma^2 \rangle \sim C^{-1}$.
- Inefficient use of computer to generate many ensembles (make ensemble bigger; run at smaller lattice spacing; different sea quark masses; ...).
- Generate pseudo-ensembles from original ensemble:
 - jackknife: omit each individual configuration in turn (or adjacent pairs, trios, etc.) and repeat averaging and fitting; estimate error from spread;
 - bootstrap: draw individual configurations at random, allowing repeats, to make as many pseudo-ensembles of size C as you want.

- A further advantage of jackknife and bootstrap is that they can be wrapped around an arbitrarily complicated analysis.
- In this way, correlations in the statistical error can be propagated to ensemble properties with a non-linear relation to the *n*-point functions.
 - masses are an example: $G(t) \approx Ze^{-mt}Z \Rightarrow m \approx \ln[G(t)/G(t+a)];$
 - as a consequence, everything else, from amputating legs with Ze^{-mt} .
- Thus, each mass or matrix element is an ordered pair—(central value, bootstrap distribution); understand all following arithmetic this way.

Error Bars and Covariance Matrix

• Errors on the *n*-point functions are estimated from the ensemble:

$$\sigma^{2}(t) = \frac{1}{C-1} \left[\langle G(t)G(t) \rangle - \langle G(t) \rangle^{2} \right]$$

• Similarly for the covariance matrix:

$$\sigma^2(t_1,t_2) = \frac{1}{C-1} \left[\langle G(t_1)G(t_2) \rangle - \langle G(t_1) \rangle \langle G(t_2) \rangle \right]$$

• Minimize

$$\chi^{2}(\boldsymbol{m},\boldsymbol{Z}) = \sum_{t_{1},t_{2}} \left[G(t_{1}) - \sum_{n} Z_{n} e^{-m_{n}t_{1}} \right] \sigma^{-2}(t_{1},t_{2}) \left[G(t_{2}) - \sum_{n} Z_{n} e^{-m_{n}t_{2}} \right]$$

to obtain masses, m_n , and matrix elements, Z_n , for few lowest-lying states.

Constrained Curve-Fitting

- The fits to towers of states are the first of many fits, in which a series is a "theorem" (here a genuine theorem).
- Figuring out fit ranges and where to truncate is a bit of a dark art.
- · Some groups assign Bayesian priors to higher terms in the series, fitting

$$\chi^2_{\text{aug}} = \chi^2(\boldsymbol{G}|\{\boldsymbol{Z},\boldsymbol{m}\}) + \chi^2(\{\boldsymbol{Z},\boldsymbol{m}\})$$

- Anything with "Bayesian" in it can lead to long discussions, often fruitless.
- Key observation is that *decisions where to truncate* are priors: indeed extreme ones, $\delta(Z_n = 0)$ or $\delta(m_n = \infty)$, n > s. *Choosing a fit range* is prior on data.

Quantitative Errors: Tuning

The Lagrangian

• $1 + n_f + 1$ parameters:

$$\mathcal{L}_{\text{QCD}} = \frac{1}{g_0^2} \operatorname{tr}[F_{\mu\nu}F^{\mu\nu}] - \sum_f \bar{\Psi}_f (\not{D} + m_f) \Psi_f + \frac{i\theta}{32\pi^2} \varepsilon^{\mu\nu\rho\sigma} \operatorname{tr}[F_{\mu\nu}F_{\rho\sigma}]$$

- Fixing the parameters is essential step, not a loss of predictivity.
- Length scale w_0 is defined via a diffusion equation; r_1 via QQ potential.
- Statistical and systematic uncertainties propagate from fiducials to others.

The Lagrangian

• $1 + n_f + 1$ parameters:

$$\mathcal{L}_{\text{QCD}} = \frac{1}{g_0^2} \operatorname{tr}[F_{\mu\nu}F^{\mu\nu}] \qquad \qquad w_0, r_1, m_{\Omega}, \text{ or } Y(2S-1S)...$$
$$- \sum_f \bar{\psi}_f (\not{D} + m_f) \psi_f \qquad \qquad m_{\pi}, m_K, m_{J/\psi}, m_Y,$$
$$+ \frac{i\theta}{32\pi^2} \varepsilon^{\mu\nu\rho\sigma} \operatorname{tr}[F_{\mu\nu}F_{\rho\sigma}] \qquad \qquad \theta = 0.$$

fiducial observable

- Fixing the parameters is essential step, not a loss of predictivity.
- Length scale w_0 is defined via a diffusion equation; r_1 via QQ potential.
- Statistical and systematic uncertainties propagate from fiducials to others.

Quantitative Errors: Effective Field Theories

review: hep-lat/0205021

- After running the Monte Carlo a few years, accumulating zillions of files with *n*-point functions, and spending a couple months fitting them into zillions more files with masses and matrix element, the real work can begin.
- The (numerical) data are generated for a sequence of
 - lattice spacing;
 - spatial volume;
 - light quark masses;
 - heavy quark masses.

- After running the Monte Carlo a few years, accumulating zillions of files with *n*-point functions, and spending a couple months fitting them into zillions more files with masses and matrix element, the real work can begin.
- The (numerical) data are generated for a sequence of
 - lattice spacing;
 - spatial volume;
 - light quark masses more recently, including physical m_{ud} .
 - heavy quark masses.

- After running the Monte Carlo a few years, accumulating zillions of files with *n*-point functions, and spending a couple months fitting them into zillions more files with masses and matrix element, the real work can begin.
- The (numerical) data are generated for a sequence of
 - lattice spacing;
 - spatial volume;
 - light quark masses more recently, including physical m_{ud} .
 - heavy quark masses more recently, $m_c a \ll 1$, and even $m_b a \ll 1$.

- After running the Monte Carlo a few years, accumulating zillions of files with *n*-point functions, and spending a couple months fitting them into zillions more files with masses and matrix element, the real work can begin.
- The (numerical) data are generated for a sequence of
 - $a \rightarrow 0$ with Symanzik EFT; lattice spacing;
 - light quark masses;

• $m_{\pi}^2 \rightarrow (140 \text{ MeV})^2$ with chiral PT;

spatial volume;

• massive hadrons $\oplus \chi PT$;

heavy quark masses;

HQET and NRQCD.

Symanzik Effective Field Theory

An outgrowth of the "Callan-Symanzik equation"

$$\frac{d\alpha_s(\mu)}{d\ln\mu} = -\beta_0\alpha_s^2(\mu) - \beta_1\alpha_s^3(\mu) - \cdots$$

• is an effective field theory to study cutoff effects of lattice field theories:

$$\mathscr{L}_{\mathsf{LGT}} \doteq \mathscr{L}_{\mathsf{QCD}} + \sum_{i} a^{\dim \mathscr{L}_i - 4} \mathscr{K}_i(g^2, ma; \mu) \mathscr{L}_i(\mu) =: \mathscr{L}_{\mathsf{Sym}}$$

where RHS is a *continuum* field theory with extra operators to describe the cutoff effects. Pronounce \doteq as "has the same physics as".

• Data in computer: \mathcal{L}_{LGT} . Analysis tool: \mathcal{L}_{Sym} .

Symanzik Effective Field Theory 2

- The Symanzik LE \mathcal{L} helps in (at least) three ways:
 - a semi-quantitative estimate of discretization effects $-a^n \langle \mathcal{L}_i \rangle \sim (a \Lambda)^n$;
 - a theorem-based strategy for continuum extrapolation: aⁿ
 (beware the anomalous dimension in K_i!);
 - a program (the "Symanzik improvement program") for reducing latticespacing dependence: if you can reduce the leading \mathcal{K}_i in one observable, it is reduced for all observables:
 - perturbative $\mathcal{K}_i \sim \alpha_s^{l+1}$; nonperturbative $\mathcal{K}_i \sim a$.

Chiral Perturbation Theory

- Chiral perturbation theory [Weinberg, Gasser & Leutwyler] is a Lagrangian formulation of current algebra.
- A nice physical picture is to think of this as a description of the pion cloud surrounding every hadron:

$$\mathscr{L}_{\mathsf{QCD} \text{ or Sym}} \doteq \mathscr{L}_{\chi\mathsf{PT}}$$

where the LHS is a QFT of quarks and gluons, and the RHS is a QFT of pions (and, possibly, other hadrons).

- Theoretically efficient: QCD's approximate chiral symmetries constrain the interactions on the RHS, and fits to LHS data yield the couplings on the RHS.
- RHS can include (symmetry-breaking) terms to describe cutoff effects.

Recent Chiral Extrapolation: *f*_D

Bazavov et al., arXiv:1312.0149

$$\Phi_D = f_D \sqrt{M_D}$$

Finite-Volume Effects as Error

- All indications (*i.e.*, experiment, LGT) are that QCD is a massive field theory.
- A general result for static quantities in massive field theories trapped in a finite box with $e^{i\theta}$ -periodic boundary conditions [Lüscher, 1985]:

$$M_n(\infty) - M_n(L) \sim g_{n\pi} \exp\left(-\operatorname{const} m_{\pi}L\right)$$

so once $m_{\pi}L \ge 4$ or so, these effects are negligible.

- For two-body states, the situation is more complicated, and more interesting.
- Volume-dependent energy shift encode information about resonance widths and final-state phase shifts.

Finite-Volume Effects as Technique

- When finite-volume effects are well-described by χ PT, the finite-volume, even small-volume, data can be used to determine the couplings of the Gasser-Leutwyler Lagrangian.
- Several regimes:
 - *p*-regime: $1 \sim Lm_{\pi} \ll L\Lambda$ (usual pion cloud, squeezed a bit);
 - ϵ -regime: $Lm_{\pi} \ll 1 \ll L\Lambda$ (pion zero-mode nonperturbative).
- Review: K. Splittorff, arXiv:1211.1803.

Heavy Quarks

- For heavy quarks on current lattices, $m_Q a \ll 1$, worry about errors $\sim (m_Q a)^n$.
- Heavy-quark physics to the rescue:

$$\mathcal{L}_{QCD} \doteq \mathcal{L}_{HQ} = \sum_{s} m_Q^{-s} \sum_{i} \mathcal{C}_i^{(s)}(\mu) \mathcal{O}_i^{(s)}(\mu) \checkmark$$
same
$$= \bar{h} [v \cdot D + mZ_m(\mu)] h + \frac{\bar{h}D_{\perp}^2 h}{2mZ_m(\mu)} + \cdots$$
$$\mathcal{L}_{LGT} \doteq \mathcal{L}_{HQ(a)} = \sum_{s} m_Q^{-s} \sum_{i} \mathcal{C}_i^{(s)}(m_Q a, c_i; \mu) \mathcal{O}_i^{(s)}(\mu)$$
$$= \bar{h} [v \cdot D + m_1(\mu)] h + \frac{\bar{h}D_{\perp}^2 h}{2m_2(\mu)} + \cdots$$
$$= \sum_{s} a^s \sum_{i} \overline{\mathcal{C}}_i^{(s)}(m_Q a, c_i; \mu) \mathcal{O}_i^{(s)}(\mu)$$

Heavy-quark Effective Field Theory

- Using HQET as a theory of cutoff effects helps in (at least) three ways:
 - a semi-quantitative estimate of discretization effects $-b_i a^n \langle O_i \rangle \sim (a\Lambda)^n$;
 - a theorem-based strategy for continuum extrapolation, although the m_Qa dependence of the b_i makes this less easy than in Symanzik; in arXiv: 1112.3051 these effects are treated with priors.
 - a program for reducing lattice-spacing dependence: if you can reduce the leading *b_i* in one observable, it is reduced for all observables:
 - perturbative— $b_i \sim \alpha_s^{l+1}$; nonperturbative— $b_i \sim a$ or $1/m_Q$.

Summary

A Very Good Error Budget

Bailey et al., arXiv:1403.0635

stats tuning	any omissions?	
chiral	Uncertainty	$h_{\star}(1)$
continuum	Statistics	$\frac{h_{A_1}(1)}{0.4\%}$
	Scale (r_1) error	0.1%
	χ PT fits	0.5%
	$g_{D^*D\pi}$	0.3%
	Discretization errors	1.0%
	Perturbation theory	0.4%
	Isospin	0.1%
	Total	1.4%

32

A Very Good Error Budget

Bailey et al., arXiv:1403.0635

stats				
tuning	any omissions?			
chiral				
<mark>continuum</mark>	Uncertainty	$h_{A_1}(1)$		
	Statistics	0.4%		
	Scale (r_1) error	0.1%		
	χ PT fits	0.5%		
	$g_{D^*D\pi}$	0.3%		
	Discretization errors	1.0%		
	Perturbation theory	0.4%		
	Isospin	0.1%		
	Total	1.4%		

Current Status

{Lattice| | Experiment>

- We compute (best) matrix elements with 1 or (harder) 2 particles in the initial state, and 0, 1, or 2 in the final state, mediated by a local operator.
- Meson matrix elements have made huge strides over the past ten years.
- We expect that nucleon matrix elements, as well as quantities such as those needed for muon g-2, to make similar strides in the next ten years.

Questions?