Introduction to Lattice QCD
 Understanding Uncertainty Budgets

Andreas Kronfeld
 黄

Lattice Meets Experiment
Fermilab
March 7-8, 2014
$\pi . . . \Omega:$ BMW, MILC, PACS-CS, QCDSF;

QCD Hadron Spectrum

 $\eta-\eta^{\prime}$: RBC, UKQCD, Hadron Spectrum (ω); D, B : Fermilab, HPQCD, Mohler\&Woloshyn

Quark Flavor Physics: Then and Now

Quantity	CKM element	Present expt. error	2007 forecast lattice error	Present lattice error	2018 lattice error
f_{K} / f_{π}	$\left\|V_{u s}\right\|$	0.2%	0.5%	0.5%	0.15%
$f_{+}^{K \pi}(0)$	$\left\|V_{u s}\right\|$	0.2%	-	0.5%	0.2%
f_{D}	$\left\|V_{c d}\right\|$	4.3%	5%	2%	$<1 \%$
$f_{D_{s}}$	$\left\|V_{c s}\right\|$	2.1%	5%	2%	$<1 \%$
$D \rightarrow \pi \ell v$	$\left\|V_{c d}\right\|$	2.6%	-	4.4%	2%
$D \rightarrow K \ell v$	$\left\|V_{c s}\right\|$	1.1%	-	2.5%	1%
$B \rightarrow D^{*} \ell v$	$\left\|V_{c b}\right\|$	1.3%	-	1.8%	$<1 \%$
$B \rightarrow \pi \ell v$	$\left\|V_{u b}\right\|$	4.1%	-	8.7%	2%
f_{B}	$\left\|V_{u b}\right\|$	9%	-	2.5%	$<1 \%$
ξ	$\left\|V_{t s} / V_{t d}\right\|$	0.4%	$2-4 \%$	4%	$<1 \%$
ΔM_{s}	$\left\|V_{t s} V_{t b}\right\|^{2}$	0.24%	$7-12 \%$	11%	5%
B_{K}	$\operatorname{Im}\left(V_{t d}^{2}\right)$	0.5%	$3.5-6 \%$	1.3%	$<1 \%$

Quantum Mechanics with Path Integrals

- Heisenberg \& Pauli [Z. Phys. 56, 1 (1929)] used a spatial lattice and took a limit to set up canonical commutation relations for QED:

$$
\left[p_{i}, q_{j}\right]=i \hbar \delta_{i j} \rightarrow\left[p_{x}, q_{y}\right]=i \hbar \delta(x-y)
$$

- Feynman showed that QM amplitudes can be expressed as "path" integrals [RMP 20, 367 (1948)]:

$$
\langle x(t) \mid x(0)\rangle=\lim _{N \rightarrow \infty} \int \prod_{i=1}^{N-1} d x_{i} e^{i S t / N}
$$

- Kenneth Wilson combined the two technical steps with (his) renormalization theory to define gauge theories, such as QCD, on a space-time lattice [PRD 10, 2445 (1974)]. This is lattice gauge theory.

Lattice Field Theory =: Quantum Field Theory

- Infinite continuum: uncountably many d.o.f.
- Infinite lattice: countably many; used to define quantum field theory.
- Finite lattice: can evaluate integrals on a computer; dimension $\sim 10^{8 .}$
- Monte Carlo with importance sampling:

$$
\begin{aligned}
\langle\bullet\rangle & =\frac{1}{Z} \int \mathcal{D} U \mathcal{D} \psi \mathcal{D} \bar{\psi} \exp (-S)[\bullet] \\
& =\frac{1}{Z} \int \mathcal{D} U \operatorname{det}(\not D+m) \exp (-S)[\bullet]
\end{aligned}
$$

$L=N_{S} a$

Lattice Field Theory =: Quantum Field Theory

- Infinite continuum: uncountably many d.o.f.
- Infinite lattice: countably many; used to define quantum field theory.
- Finite lattice: can evaluate integrals on a computer; dimension $\sim 10^{8 .}$
- Monte Carlo with importance sampling:

$$
\begin{aligned}
\langle\bullet\rangle & =\frac{1}{Z} \int \mathcal{D} U \begin{array}{c}
\mathcal{D} \psi \mathcal{D} \bar{\psi} \exp (-S)[\bullet] \\
\text { hand } \\
\end{array}=\frac{1}{Z} \int \mathcal{D} U \operatorname{det}(D \operatorname{D}+m) \exp (-S)\left[\bullet^{\prime}\right]
\end{aligned}
$$

$L=N_{S} a$

Lattice Field Theory =: Quantum Field Theory

- Infinite continuum: uncountably many d.o.f.
- Infinite lattice: countably many; used to define quantum field theory.
- Finite lattice: can evaluate integrals on a computer; dimension $\sim 10^{8}$.
- Monte Carlo with importance sampling:

$$
\begin{aligned}
\langle\bullet\rangle & =\frac{1}{Z} \int\left(\begin{array}{c}
\mathcal{D} U \\
\mathrm{MC} \\
\mathcal{D} \psi \mathcal{D} \bar{\psi} \\
\text { hand } \\
\mathcal{D} U
\end{array}\right] \exp (-S)[\bullet] \\
& \left.=\frac{1}{Z} \int \not \operatorname{det}+m\right) \exp (-S)\left[\bullet^{\prime}\right]
\end{aligned}
$$

$L=N_{S} a$

n-Point Functions Yield Masses \& Matrix Elements

- Two-point functions for masses $\pi(t)=\bar{\psi}_{u} \gamma^{5} \psi_{d}$:

$$
\left.G(t)=\left\langle\pi(t) \pi^{\dagger}(0)\right\rangle=\sum_{n}|\langle 0| \hat{\pi}| \pi_{n}\right\rangle\left.\right|^{2} \exp \left(-m_{\pi_{n}} t\right)
$$

- Two-point functions for decay constants:

$$
\left\langle J(t) \pi^{\dagger}(0)\right\rangle=\sum_{n}\langle 0| \hat{J}\left|\pi_{n}\right\rangle\left\langle\pi_{n}\right| \hat{\pi}^{\dagger}|0\rangle \exp \left(-m_{\pi_{n}} t\right)
$$

- Three-point functions for form factors, mixing:

$$
\begin{aligned}
\left\langle\pi(t) J(u) B^{\dagger}(0)\right\rangle=\sum_{m n}\langle 0| \hat{\pi} \mid & \left.\pi_{m}\right\rangle \\
\left\langle\pi_{n}\right| \hat{J}\left|B_{m}\right\rangle & \left\langle B_{m}\right| \hat{B}^{\dagger}|0\rangle \\
& \times \exp \left[-m_{\pi_{n}}(t-u)-m_{B_{m}} u\right]
\end{aligned}
$$

Kinds of Uncertainty

- Quantitative:
- based on "theorems" and derived from (numerical) data;
- Semi-quantitative:
- based on "theorems" but insufficient data to make robust estimates;
- Non-quantitative:
- error exists but estimation is mostly subjective (or, hence, omitted);
- Sociological.

Semi-quantitative Errors

Errors Estimated Semi-quantitatively

- Sometimes the (numerical) data are insufficient to estimate robustly an uncertainty:
- the statistical quality is not good enough;
- the range of parameters is not wide enough;
- try this, that, and the other fit; cogitate; repeat.
- These cases are a limiting case of errors estimated quantitatively, so are discussed later in the talk.

Errors Estimated Semi-quantitatively 2

- Perturbative matching (a class of discretization effect):
- estimate error from truncating PT with the same "reliability" as in continuum pQCD;
- multi-loop perturbative lattice gauge theory is daunting.
- nonperturbative matching, where feasible, fixes this.
- Heavy-quark discretization effects:
- theory says $\alpha_{s}^{l+1} b_{l}^{[l+1]}\left(a m_{\mathrm{q}}\right) a^{n}\left\langle O_{i}\right\rangle$, with $a^{n}\left\langle O_{i}\right\rangle \sim(a \Lambda)^{n}$;
- for each LHQ action, know asymptotics of $b_{i}\left(a m_{q}\right)$, but that's it.

Quantitative Errors: Statistics

Monte Carlo Integration with Importance Sampling

- Estimate integral as a sum over randomly chosen configurations of U :

$$
\begin{aligned}
\langle\bullet\rangle & =\frac{1}{Z} \int \mathcal{D} U \operatorname{det}(\not D+m) \exp (-S)\left[\bullet^{\prime}\right] \\
& \approx \frac{1}{C} \sum_{c=0}^{C-1} \bullet^{\prime}\left[U^{(c)}\right]
\end{aligned}
$$

where $\left\{U^{(c)}\right\}$ is distributed with probability density $\operatorname{det}(D+m) \exp (-S)$; often called "simulation," although this may be an abuse of language.

- Sum converges to desired result as ensemble size $C \rightarrow \infty$.
- With $C<\infty$, statistical errors and correlations between, say, $G(t)$ and $G(t+a)$.

Central Limit Theorem

- Thought simulation: generate many ensembles of size C. Observables $\langle\bullet\rangle$ are Gaussian-distributed around true value, with $\left\langle\sigma^{2}\right\rangle \sim C^{-1}$.
- Inefficient use of computer to generate many ensembles (make ensemble bigger; run at smaller lattice spacing; different sea quark masses; ...).
- Generate pseudo-ensembles from original ensemble:
- jackknife: omit each individual configuration in turn (or adjacent pairs, trios, etc.) and repeat averaging and fitting; estimate error from spread;
- bootstrap: draw individual configurations at random, allowing repeats, to make as many pseudo-ensembles of size C as you want.
- A further advantage of jackknife and bootstrap is that they can be wrapped around an arbitrarily complicated analysis.
- In this way, correlations in the statistical error can be propagated to ensemble properties with a non-linear relation to the n-point functions.
- masses are an example: $G(t) \approx Z \mathrm{e}^{-m t} Z \Rightarrow m \approx \ln [G(t) / G(t+a)]$;
- as a consequence, everything else, from amputating legs with $\mathrm{Ze}^{-m t}$.
- Thus, each mass or matrix element is an ordered pair-(central value, bootstrap distribution); understand all following arithmetic this way.

Error Bars and Covariance Matrix

- Errors on the n-point functions are estimated from the ensemble:

$$
\sigma^{2}(t)=\frac{1}{C-1}\left[\langle G(t) G(t)\rangle-\langle G(t)\rangle^{2}\right]
$$

- Similarly for the covariance matrix:

$$
\sigma^{2}\left(t_{1}, t_{2}\right)=\frac{1}{C-1}\left[\left\langle G\left(t_{1}\right) G\left(t_{2}\right)\right\rangle-\left\langle G\left(t_{1}\right)\right\rangle\left\langle G\left(t_{2}\right)\right\rangle\right]
$$

- Minimize

$$
\chi^{2}(\boldsymbol{m}, \boldsymbol{Z})=\sum_{t_{1}, t_{2}}\left[G\left(t_{1}\right)-\sum_{n} Z_{n} e^{-m_{n} t_{1}}\right] \sigma^{-2}\left(t_{1}, t_{2}\right)\left[G\left(t_{2}\right)-\sum_{n} Z_{n} e^{-m_{n} t_{2}}\right]
$$

to obtain masses, m_{n}, and matrix elements, Z_{n}, for few lowest-lying states.

Constrained Curve-Fitting

- The fits to towers of states are the first of many fits, in which a series is a "theorem" (here a genuine theorem).
- Figuring out fit ranges and where to truncate is a bit of a dark art.
- Some groups assign Bayesian priors to higher terms in the series, fitting

$$
\chi_{\text {aug }}^{2}=\chi^{2}(\boldsymbol{G} \mid\{\boldsymbol{Z}, \boldsymbol{m}\})+\chi^{2}(\{\boldsymbol{Z}, \boldsymbol{m}\})
$$

- Anything with "Bayesian" in it can lead to long discussions, often fruitless.
- Key observation is that decisions where to truncate are priors: indeed extreme ones, $\delta\left(Z_{n}=0\right)$ or $\delta\left(m_{n}=\infty\right), n>s$. Choosing a fit range is prior on data.

Quantitative Errors: Tuning

The Lagrangian

- $1+n_{f}+1$ parameters:

$$
\begin{aligned}
\mathcal{L}_{\mathrm{QCD}} & =\frac{1}{g_{0}^{2}} \operatorname{tr}\left[F_{\mu \nu} F^{\mu \nu}\right] \\
& -\sum_{f} \bar{\Psi}_{f}\left(\not D D+m_{f}\right) \psi_{f} \\
& +\frac{i \theta}{32 \pi^{2}} \varepsilon^{\mu v \rho \sigma} \operatorname{tr}\left[F_{\mu \nu} F_{\rho \sigma}\right]
\end{aligned}
$$

- Fixing the parameters is essential step, not a loss of predictivity.
- Length scale w_{0} is defined via a diffusion equation; r_{1} via QQ potential.
- Statistical and systematic uncertainties propagate from fiducials to others.

The Lagrangian

- $1+n_{f}+1$ parameters:

$$
\begin{aligned}
\mathcal{L}_{\mathrm{QCD}} & =\frac{1}{g_{0}^{2}} \operatorname{tr}\left[F_{\mu \nu} F^{\mu \nu}\right] & & w_{0}, r_{1}, m_{\Omega}, \text { or } \mathrm{Y}(2 \mathrm{~S}-1 \mathrm{~S}) \ldots \\
& -\sum_{f} \bar{\psi}_{f}\left(\not D+m_{f}\right) \psi_{f} & & m_{\pi}, m_{K}, m_{\mathrm{J} / \psi}, m_{\mathrm{Y}}, \ldots \\
& +\frac{i \theta}{32 \pi^{2}} \varepsilon^{\mu v \rho \sigma} \operatorname{tr}\left[F_{\mu \nu} F_{\rho \sigma}\right] & & \theta=0 .
\end{aligned}
$$

- Fixing the parameters is essential step, not a loss of predictivity.
- Length scale w_{0} is defined via a diffusion equation; r_{1} via QQ potential.
- Statistical and systematic uncertainties propagate from fiducials to others.

Quantitative Errors: Effective Field Theories

review: hep-lat/0205021

Yesterday's Output is Today's Input

- After running the Monte Carlo a few years, accumulating zillions of files with n-point functions, and spending a couple months fitting them into zillions more files with masses and matrix element, the real work can begin.
- The (numerical) data are generated for a sequence of
- lattice spacing;
- spatial volume;
- light quark masses;
- heavy quark masses.

Yesterday's Output is Today's Input

- After running the Monte Carlo a few years, accumulating zillions of files with n-point functions, and spending a couple months fitting them into zillions more files with masses and matrix element, the real work can begin.
- The (numerical) data are generated for a sequence of
- lattice spacing;
- spatial volume;
- light quark masses-more recently, including physical $m_{u d}$.
- heavy quark masses.

Yesterday's Output is Today's Input

- After running the Monte Carlo a few years, accumulating zillions of files with n-point functions, and spending a couple months fitting them into zillions more files with masses and matrix element, the real work can begin.
- The (numerical) data are generated for a sequence of
- lattice spacing;
- spatial volume;
- light quark masses-more recently, including physical $m_{u d}$.
- heavy quark masses - more recently, $m_{c} a \ll 1$, and even $m_{b} a \ll 1$.

Yesterday's Output is Today's Input

- After running the Monte Carlo a few years, accumulating zillions of files with n-point functions, and spending a couple months fitting them into zillions more files with masses and matrix element, the real work can begin.
- The (numerical) data are generated for a sequence of
- lattice spacing;
- $a \rightarrow 0$ with Symanzik EFT;
- light quark masses;
- $m_{\pi}^{2} \rightarrow(140 \mathrm{MeV})^{2}$ with chiral PT;
- spatial volume;
- heavy quark masses;
- massive hadrons $\oplus \chi \mathrm{PT}$;
- HQET and NRQCD.

Symanzik Effective Field Theory

- An outgrowth of the "Callan-Symanzik equation"

$$
\frac{d \alpha_{s}(\mu)}{d \ln \mu}=-\beta_{0} \alpha_{s}^{2}(\mu)-\beta_{1} \alpha_{s}^{3}(\mu)-\cdots
$$

- is an effective field theory to study cutoff effects of lattice field theories:

$$
\mathscr{L}_{\mathrm{LGT}} \doteq \mathscr{L}_{\mathrm{QCD}}+\sum_{i} a^{\operatorname{dim} \mathscr{L}_{i}-4} \mathscr{K}_{i}\left(g^{2}, m a ; \mu\right) \mathscr{L}_{i}(\mu)=: \mathscr{L}_{\mathrm{Sym}}
$$

where RHS is a continuum field theory with extra operators to describe the cutoff effects. Pronounce \doteq as "has the same physics as".

- Data in computer: \mathscr{L} lgt. Analysis tool: \mathscr{L} sym.

Symanzik Effective Field Theory 2

- The Symanzik LE \mathcal{L} helps in (at least) three ways:
- a semi-quantitative estimate of discretization effects $-a^{n}\left\langle\mathcal{L}_{i}\right\rangle \sim(a \Lambda)^{n}$;
- a theorem-based strategy for continuum extrapolation: a^{n} (beware the anomalous dimension in \mathcal{K}_{i} !);
- a program (the "Symanzik improvement program") for reducing latticespacing dependence: if you can reduce the leading \mathcal{K}_{i} in one observable, it is reduced for all observables:
- perturbative $-\mathcal{K}_{i} \sim \alpha_{s}^{l+1}$; nonperturbative $-\mathcal{K}_{i} \sim a$.

Chiral Perturbation Theory

- Chiral perturbation theory [Weinberg, Gasser \& Leutwyler] is a Lagrangian formulation of current algebra.
- A nice physical picture is to think of this as a description of the pion cloud surrounding every hadron:

$$
\mathscr{L}_{Q C D} \text { or } \mathrm{Sym} ~ \doteq \mathscr{L}_{\chi \mathrm{PT}}
$$

where the LHS is a QFT of quarks and gluons, and the RHS is a QFT of pions (and, possibly, other hadrons).

- Theoretically efficient: QCD's approximate chiral symmetries constrain the interactions on the RHS, and fits to LHS data yield the couplings on the RHS.
- RHS can include (symmetry-breaking) terms to describe cutoff effects.

Recent Chiral Extrapolation: f_{D}

Finite-Volume Effects as Error

- All indications (i.e., experiment, LGT) are that QCD is a massive field theory.
- A general result for static quantities in massive field theories trapped in a finite box with $\mathrm{e}^{i \theta-\text {-periodic boundary conditions [Lüscher, 1985]: }}$

$$
M_{n}(\infty)-M_{n}(L) \sim g_{n \pi} \exp \left(- \text { const } m_{\pi} L\right)
$$

so once $m_{\pi} L \gtrsim 4$ or so, these effects are negligible.

- For two-body states, the situation is more complicated, and more interesting.
- Volume-dependent energy shift encode information about resonance widths and final-state phase shifts.

Finite-Volume Effects as Technique

- When finite-volume effects are well-described by $\chi \mathrm{PT}$, the finite-volume, even small-volume, data can be used to determine the couplings of the GasserLeutwyler Lagrangian.
- Several regimes:
- p-regime: $1 \sim L m_{\pi} \ll L \Lambda$ (usual pion cloud, squeezed a bit);
- ε-regime: $L m_{\pi} \ll 1 \ll L \Lambda$ (pion zero-mode nonperturbative).
- Review: K. Splittorff, arXiv:1211.1803.

Heavy Quarks

- For heavy quarks on current lattices, $m_{Q} a \ll / 1$, worry about errors $\sim\left(m_{Q} a\right)^{n}$.
- Heavy-quark physics to the rescue:

$$
\begin{aligned}
\mathscr{L}_{\mathrm{QCD}} \doteq \mathscr{L}_{\mathrm{HQ}} & =\sum_{s} m_{Q}^{-s} \sum_{i} \mathscr{C}_{i}^{(s)}(\mu) \mathscr{O}_{i}^{(s)}(\mu) \\
& =\bar{h}\left[v \cdot D+m Z_{m}(\mu)\right] h+\frac{\bar{h} D_{\perp}^{2} h}{2 m Z_{m}(\mu)}+ \\
\mathscr{L}_{\mathrm{LGT}} \doteq \mathscr{L}_{\mathrm{HQ}(a)} & =\sum_{s} m_{Q}^{-s} \sum_{i} \mathscr{C}_{i}^{(s)}\left(m_{Q} a, c_{i} ; \mu\right) \mathscr{O}_{i}^{(s)}(\mu) \\
& =\bar{h}\left[v \cdot D+m_{1}(\mu)\right] h+\frac{\bar{h} D_{\perp}^{2} h}{2 m_{2}(\mu)}+\cdots \\
& =\sum_{s} a^{s} \sum_{i} \overline{\mathscr{C}}_{i}^{(s)}\left(m_{Q} a, c_{i} ; \mu\right) \mathscr{O}_{i}^{(s)}(\mu)
\end{aligned}
$$

Heavy-quark Effective Field Theory

- Using HQET as a theory of cutoff effects helps in (at least) three ways:
- a semi-quantitative estimate of discretization effects $-b_{i} a^{n}\left\langle O_{i}\right\rangle \sim(a \Lambda)^{n}$,
- a theorem-based strategy for continuum extrapolation, although the $m_{Q} a$ dependence of the b_{i} makes this less easy than in Symanzik; in arXiv: 1112.3051 these effects are treated with priors.
- a program for reducing lattice-spacing dependence: if you can reduce the leading b_{i} in one observable, it is reduced for all observables:
- perturbative $-b_{i} \sim \alpha_{s}^{l+1}$; nonperturbative $-b_{i} \sim a$ or $1 / m_{Q}$.

Summary

A Very Good Error Budget

stats tuning chiral		any omissions?	
continuum	Uncertainty	$h_{A_{1}(1)}$	
	Statistics	0.4%	
	Scale $\left(r_{1}\right)$ error	0.1%	
	χ PT fits	0.5%	
	$g_{D^{*} D \pi}$	0.3%	
	Discretization errors	1.0%	
	Perturbation theory	0.4%	
	Isospin	0.1%	
	Total	1.4%	

A Very Good Error Budget

Bailey et al., arXiv:1403.0635

stats tuning chiral	any omissions?		
continuum	Uncertainty	$h_{A_{1}(1)}$	
	Statistics	0.4%	
	Scale $\left(r_{1}\right)$ error	0.1%	
	χ PT fits	0.5%	
	$g_{D^{*} D \pi}$		
	Discretization errors	1.0%	
	Perturbation theory	0.4%	
	Isospin	0.1%	
	Total	1.4%	

Current Status

〈Lattice| Experiment〉

- We compute (best) matrix elements with 1 or (harder) 2 particles in the initial state, and 0,1 , or 2 in the final state, mediated by a local operator.
- Meson matrix elements have made huge strides over the past ten years.
- We expect that nucleon matrix elements, as well as quantities such as those needed for muon $g-2$, to make similar strides in the next ten years.

Questions?

