Hadronic Light-by-Light contribution to the muon g-2 from lattice QCD

Tom Blum (UConn / RIKEN BNL Research Center)
Masashi Hayakawa (Nagoya) Taku Izubuchi (BNL/RBRC)

Lattice Meets Experiment 2014 - Fermilab

March 8, 2014
Collaborators

Work on g-2 done in collaboration with

<table>
<thead>
<tr>
<th>HVP</th>
<th>HLbL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Christopher Aubin (Fordham U)</td>
<td>Saumitra Chowdhury (UConn)</td>
</tr>
<tr>
<td>Maarten Golterman (SFSU)</td>
<td>Masashi Hayakawa (Nagoya)</td>
</tr>
<tr>
<td>Santiago Peris (SFSU/Barcelona)</td>
<td>Taku Izubuchi (BNL/RBRC)</td>
</tr>
<tr>
<td>RBC/UKQCD Collaboration</td>
<td>Eigo Shintani (RBRC)</td>
</tr>
<tr>
<td></td>
<td>Norikazu Yamada (KEK)</td>
</tr>
<tr>
<td></td>
<td>Norman Christ (Columbia)</td>
</tr>
<tr>
<td></td>
<td>Luchang Jin (Columbia)</td>
</tr>
</tbody>
</table>
Introduction

The hadronic light-by-light (HLbL) contribution \((O(\alpha^3)) \)

Summary/Outlook

Backup slides
The magnetic moment of the muon

Interaction of particle with static magnetic field

\[V(\vec{x}) = -\vec{\mu} \cdot \vec{B}_{\text{ext}} \]

The magnetic moment \(\vec{\mu} \) is proportional to its spin \((c = \hbar = 1)\)

\[\vec{\mu} = g \left(\frac{e}{2m} \right) \vec{S} \]

The Landé \(g \)-factor is predicted from the free Dirac eq. to be

\[g = 2 \]

for elementary fermions
The magnetic moment of the muon

In interacting quantum (field) theory g gets corrections

\[\gamma^\mu \rightarrow \Gamma^\mu(q) = \left(\gamma^\mu F_1(q^2) + \frac{i \sigma^{\mu\nu} q_\nu}{2m} F_2(q^2) \right) \]

which results from Lorentz and gauge invariance when the muon is on-mass-shell.

\[F_2(0) = \frac{g - 2}{2} \equiv a_\mu \quad (F_1(0) = 1) \]

(the anomalous magnetic moment, or anomaly)
Outline

Introduction

The hadronic light-by-light (HLbL) contribution ($O(\alpha^3)$)

Summary/Outlook

Backup slides
The hadronic light-by-light amplitude

Blobs: all possible hadronic states

Model estimates put this $\mathcal{O}(\alpha^3)$ contribution at about $(10 - 12) \times 10^{-10}$ with a 25-40% uncertainty

No dispersion relation *a la* vacuum polarization

Dominated by pion pole (models)

Lattice regulator: model independent, approximations systematically improvable
Lattice QCD: conventional approach

Correlation of 4 EM currents
\[\Pi^{\mu\nu\rho\sigma}(q, p_1, p_2) \]

Two independent momenta
+ external mom \(q \)

Compute for all possible values of \(p_1 \) and \(p_2 \) \((O(V^2)) \)

four index tensor

several \(q \) \((\text{extrap } q \to 0) \), fit, plug into perturbative QED two-loop integrals
Alternate approach: Lattice QCD+QED

Average over combined gluon and photon gauge configurations

Quarks coupled to gluons and photons

muon coupled to photons

[Hayakawa, et al. hep-lat/0509016;
Chowdhury et al. (2008);
Chowdhury Ph. D. thesis (2009)]
Alternate approach: Lattice QCD+QED

Attach one photon by hand (see why in a minute)

Correlation of hadronic loop and muon line

[Hayakawa, et al. hep-lat/0509016; Chowdhury et al. (2008); Chowdhury Ph. D. thesis (2009)]
Formally expand in α electromagnetic

The leading and next-to-leading contributions in α to magnetic part of correlation function come from

\[\alpha^2 \text{ Bad! } + \alpha^3 \]

\[\alpha^3 \text{ Good! } + \alpha^3 + \ldots \]
Subtraction of lowest order piece

Subtraction term is product of separate averages of the loop and line.

Gauge configurations identical in both, so two are highly correlated.

In PT, correlation function and subtraction have same contributions except the light-by-light term which is absent in the subtraction.
Subtraction of lowest order piece: two photons?

- absent in subtraction term, but vanishes due to Furry’s theorem
- Only after averaging over gauge fields, potentially large error ($O(\alpha^2)$ compared to signal of $O(\alpha^3)$)
- **Exact symmetry** under $p \rightarrow -p$
 $e \rightarrow -e$ on muon line only
- If e unchanged, only effect is to flip the sign of all diagrams with two photons, so these cancel on each configuration.
- Observe large reductions in statistical errors after momentum averaging
The hadronic light-by-light (HLbL) contribution ($O(\alpha^3)$)

Summary/Outlook

QED test [Chowdhury Ph. D. thesis, UConn, 2009]

\[F_2 = (3.96 \pm 0.70) \times 10^{-4} \]

- $m_\mu / m_e = 40$
- $e = 1$
- $16^3 \times 32$ lattice size
- lowest non-zero momentum only ($|p|/m_\mu \approx 1$)
- **stat error only**

- Expected size of enhancement (compared to $m_\mu / m_e = 1$)
- Continuum PT result: $\approx 10(\alpha/\pi)^3 = 1.63 \times 10^{-4}$ ($e = 1$)
- roughly consistent with PT result, large finite volume effect
QED test: finite volume study

- Repeat calculation with 24^3 lattice volume
- Bigger box $F_2 = (1.19 \pm 0.32) \times 10^{-4}$
- Small box $F_2 = (3.96 \pm 0.70) \times 10^{-4}$
- Finite volume effects manageable
- Continuum PT result: $\approx 10(\alpha/\pi)^3 = 1.63 \times 10^{-4}$ ($e = 1$)
- Roughly consistent with PT result
2+1f QCD+QED (PRELIMINARY)

- Same as before, but with $U = U(1) \times SU(3)$ [Duncan, et al.]
- QCD in the loop only (same in subtraction)
- QED in both loop and line
- 2+1 flavors of DWF (RBC/UKQCD)
- $a = 0.114$ fm, $16^3 \times 32 \times 16$, $a^{-1} = 1.73$ GeV
- $m_q \approx 0.013$, $m_\pi \approx 420$ MeV
- $m_\mu \approx 692$ MeV ($m_\mu^{\text{phys}} = 105.658367(4)$ MeV)
- 100 configurations (one QED conf. for each QCD conf.)
- $(N_s/4)^3 = 64$ (loop) propagator calculations/configuration
2+1f lattice QCD+QED (PRELIMINARY)

- \(a_\mu(\text{HLbL}) = (-11.6 \pm 1.2) \times 10^{-5} = -1.58 \pm 0.16 \times (\alpha/\pi)^3 \) (lowest non-zero mom, \(e = 1 \))
- Magnitude 10 times bigger, sign opposite from models
- HLbL amplitude depends strongly on \(m_\mu \) (\(m_\mu^2 \) in models)
- Leading contribution is from pion pole
- Non-leading terms in models can give large, negative values (see arXiv:1309.2225 for summary and new results)
- Check subtraction is working by varying \(e = 0.84, 1.19 \)
 - HLbL amplitude (\(\sim e^4 \)) changes by \(\sim 0.5 \) and 2 ✓
 - while unsubtracted amplitude stays the same ✓
Easy to lower muon mass (muon line is cheap)

- Try $m_\mu \approx 190$ MeV
- $a_\mu(\text{HLbL}) = (-0.96 \pm 0.36) \times 10^{-5} = -0.131 \pm 0.049 \times (\alpha/\pi)^3$
 (lowest non-zero mom, $e = 1$).

Right direction, right amount ...
More realistic ensemble (RBC/UKQC DWF)

- Larger lattice size, \(24^3\) \((2.7 \text{ fm})^3\)
- Pion mass is smaller too, \(m_\pi = 329\) MeV
- Same muon mass (190 MeV)
- \(0.11 \lesssim Q^2 \lesssim 0.31\) GeV
- Use **All Mode Averaging** (AMA)
 - \(6^3\) \((5^3)\) point sources/configuration = 216 (125)
 - AMA approximation: “sloppy CG”, \(r_{\text{stop}} = 10^{-4}\)
2+1f lattice QCD+QED (PRELIMINARY)

- Model value/error is "Glasgow Consensus"
 (arXiv:0901.0306 [hep-ph])
- Lattice: stat. error only
- Several source/sink separations for muon
- Possible significant excited state contamination
- $m_\pi = 329, 422$ MeV
- Pion pole may be emerging

[Blum, Hayakawa, and Izubuchi (2014)]
“Disconnected” diagrams

not calculated yet

Omission due to use of quenched QED, i.e., sea quarks not electrically charged. Two possibilities,

2. dynamical QED(+QCD) in HMC

Use same non-perturbative method as for quenched QED
Disconnected quark loop diagrams

\[\langle \text{QCD} \rangle \]

\[\langle \text{QCD} \rangle, \langle \text{QCD} \rangle \]

\[\langle \text{QCD} \rangle, \langle \text{QCD} \rangle, \langle \text{QCD} \rangle \]

\[\langle \text{QCD} \rangle, \langle \text{QCD} \rangle, \langle \text{QCD} \rangle, \langle \text{QCD} \rangle \]

\[\langle \text{QCD} \rangle, \langle \text{QCD} \rangle, \langle \text{QCD} \rangle, \langle \text{QCD} \rangle \]

\[\langle \text{QCD} \rangle, \langle \text{QCD} \rangle, \langle \text{QCD} \rangle, \langle \text{QCD} \rangle \]

\[\langle \text{QCD} \rangle, \langle \text{QCD} \rangle, \langle \text{QCD} \rangle, \langle \text{QCD} \rangle \]

\[\langle \text{QCD} \rangle, \langle \text{QCD} \rangle, \langle \text{QCD} \rangle, \langle \text{QCD} \rangle \]

\[\langle \text{QCD} \rangle, \langle \text{QCD} \rangle, \langle \text{QCD} \rangle, \langle \text{QCD} \rangle \]

\[\langle \text{QCD} \rangle, \langle \text{QCD} \rangle, \langle \text{QCD} \rangle, \langle \text{QCD} \rangle \]
Disconnected quark loops in non-perturbative method

\[\mathcal{M}_C = \langle \text{QCD+f-QED} \rangle \], \quad \mathcal{M}_{C'} = \langle \text{QCD+f-QED} \rangle \],
\[\mathcal{S}_C = \langle \text{f-QED} \rangle \cdot \langle \text{QCD+f-QED} \rangle \],
\[\mathcal{S}_{C'} = \langle \text{f-QED} \rangle \cdot \langle \text{QCD+f-QED} \rangle \],
\[\mathcal{S}_D = \langle \text{f-QED} \rangle \cdot \langle \text{QCD+f-QED} \rangle \].
Disconnected quark loops in non-perturbative method

Diagrams in non-perturbative method have various “multiplicities”

<table>
<thead>
<tr>
<th></th>
<th>$M_C + M_{C'}$</th>
<th>M_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBL(4)</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>LBL(1,3)</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>LBL(2,2)</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>LBL(3,1)</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>LBL(1,1,2)</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>LBL(2,1,1)</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>LBL(1,1,1,1)</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

But, physical linear combination, $M_C + M_{C'} + M_D$ has overall factor of 3
more systematic errors

- quark mass
- sea-quark charge
- Finite volume
- $q^2 \to 0$ extrapolation
- $m_\mu \to m_\mu, \text{phys}$
- excited states/“around the world” effects
- $a \to 0$
- QED renormalization
- ...
Timeline for calculation (very rough)

1. Connected part, near physical pion mass: end of 2014
2. Connected part, physical pion mass: mid 2015
3. First disconnected parts / dynamical QED: end of 2015
4. Refined calculation addressing all systematics: 201-?
Outline

Introduction

The hadronic light-by-light (HLbL) contribution ($O(\alpha^3)$)

Summary/Outlook

Backup slides
Summary/Outlook

- First HLbL lattice calculation encouraging
- Current/next steps
 1. 170 MeV pion, connected: pion pole?
 2. 420 MeV pion, connected: excited state contamination
 3. dynamical QED
Acknowledgments

- This research is supported in part by the US DOE
- Computational resources provided by the RIKEN BNL Research Center and USQCD Collaboration
- Lattice computations done on
 - QCDOC at BNL
 - Ds cluster at FNAL
Outline

Introduction

The hadronic light-by-light (HLbL) contribution ($O(\alpha^3)$)

Summary/Outlook

Backup slides
The magnetic moment of the muon

Compute these corrections order-by-order in perturbation theory by expanding $\Gamma^\mu(q^2)$ in QED coupling constant

$$\alpha = \frac{e^2}{4\pi} = \frac{1}{137} + \ldots$$

Corrections begin at $\mathcal{O}(\alpha)$; Schwinger term $= \frac{\alpha}{2\pi} = 0.0011614 \ldots$

hadronic contributions $\sim 6 \times 10^{-5}$ times smaller (leading error).
The SM Value for a_μ from $e^+e^- \rightarrow \text{hadrons}$ (Updated 9/10)

<table>
<thead>
<tr>
<th>CONTRIBUTION</th>
<th>RESULT ($\times 10^{-11}$) UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>QED (leptons)</td>
<td>$116\ 584\ 718.09 \pm 0.14 \pm 0.04_\alpha$</td>
</tr>
<tr>
<td>HVP(lo)</td>
<td>$6\ 914 \pm 42_{\exp} \pm 14_{\rad} \pm 7_{\QCD}$</td>
</tr>
<tr>
<td>HVP(ho)</td>
<td>$-98 \pm 1_{\exp} \pm 0.3_{\rad}$</td>
</tr>
<tr>
<td>HLxL</td>
<td>105 ± 26</td>
</tr>
<tr>
<td>EW</td>
<td>$152 \pm 2 \pm 1$</td>
</tr>
<tr>
<td>Total SM</td>
<td>$116\ 591\ 793 \pm 51$</td>
</tr>
</tbody>
</table>

A. Höcker Tau 2010, U. Manchester September 2010

new: QED thru $O(\alpha^5)$
[Aoyama, et al., 2012]
Experimental value (dominated by BNL E821)

E821 achieved ± 0.54 ppm. The e^+e^- based theory is at the ~0.4 ppm level. Difference is ~3.6 σ

$$a_\mu^{exp} = 116592089(63) \times 10^{-11} \text{ (0.54 ppm)}$$

$$\Delta a_\mu \equiv a_\mu^{exp} - a_\mu^{SM} = (287 \pm 80) \times 10^{-11}$$

Lee Roberts - INT Workshop on HLBL 28 February 2011

- p. 17/24
New experiments + new theory = (?) new physics

muon anomaly a_μ provides important test of the SM

- Fermilab E989, $\sim 2 - 3$ years away, 0.14 ppm
- J-PARC E34 ? (recently, lower priority than $\mu \rightarrow e$)
- $a_\mu(\text{Expt}) - a_\mu(\text{SM}) = 287(63)(51) \times 10^{-11}$, or $\sim 3.6\sigma$
 to $249(87) \times 10^{-11}$, or $\sim 2.9\sigma$
- If both central values stay the same,
 - E989 ($\sim 4 \times$ smaller error) $\rightarrow \sim 5\sigma$
 - E989+new HLBL theory (models+lattice, 10%) $\rightarrow \sim 6\sigma$
 - E989+new HLBL +new HVP (50% reduction) $\rightarrow \sim 8\sigma$
- Big discrepancy! (New Physics $\sim 2 \times$ Electroweak)
- Lattice calculations crucial