Hadronic Vacuum Polarization for g -2

Taku Izubuchi

Tom Blum, Hyung-Jin Kim , Eigo Shintani,

RIKEN BNL
Research Center

Fermilab, Lattice QCD Meets Experiment, Batavia, March 8, 2013

SM Theory

- QED, hadronic, EW contributions

> QED (5-loop) Aoyama et al.
PRL109,111808 (2012)

Hadronic vacuum polarization (HVP)

Hadronic light-by-light (HIbl)
[T. Blum's talk]
Electroweak (EW)
Knecht et al 02
Czarnecki et al. 02

SM Theory prediction

- QED, EW, Hadronic contributions
K. Hagiwara et al. , J. Phys. G: Nucl. Part. Phys. 38 (2011) 085003

$$
a_{\mu}^{\mathrm{SM}}=\left(\begin{array}{llll}
11 & 659 & 182.8 & \pm 4.9
\end{array}\right) \times 10^{-10}
$$

$$
a_{\mu}^{\mathrm{EXP}}-a_{\mu}^{\mathrm{SM}}=(26.1 \pm 8.0) \times 10^{-10}
$$

- Discrepancy between EXP and SM is larger than EW!
- Currently the dominant uncertainty comes from HVP, followed by HLbL
- Theoretical estimate of HLbL is really under control?
- LQCD \Rightarrow the first principles' estimate for the hadronic parts.

$(\mathrm{g}-2)_{\mu}$ theory vs experiment

[K. Hagiwara et al., J. Phys. G 38, 085003 (2011)]

$$
\left\{\begin{array}{l}
a_{\mu}^{\exp }-a_{\mu}^{\mathrm{SM}}=(26.1 \pm 8.0) \cdot 10^{-10}[3.3 \sigma] \quad \text { for } a_{\mu}^{\mathrm{HLxL}}=(10.5 \pm 2.6) \cdot 10^{-10} \\
\left(a_{\mu}^{\exp }-a_{\mu}^{\mathrm{SM}}=(25.0 \pm 8.6) \cdot 10^{-10}[2.9 \sigma] \quad \text { for } a_{\mu}^{\mathrm{HLxL}}=(11.6 \pm 4.0) \cdot 10^{-10}\right)
\end{array}\right.
$$

- $\sim 3 \sigma$ discrepancy?
- SM prediction
\rightarrow Hadronic uncertainties ?

HMNT (06)	
JN (09)	
Davier et al, $\tau(10)$	
Davier et al, $\mathrm{e}^{+} \mathrm{e}^{-}(10)$	
JS (11)	
HLMNT (10)	
HLMNT (11)	
BNL	
BNL (new from shift in λ) $\quad 1 \quad \longmapsto$	
$a_{\mu} \times 10^{10}-11659000$	

Leading order of hadronic contribution (HVP)

- Hadronic vacuum polarization (HVP)
$v_{\mu} \cdot v_{v}=\left(q^{2} g_{\mu \nu}-q_{\mu} q_{\nu}\right) \Pi_{V}\left(q^{2}\right)$

$$
\text { quark's EM current : } \quad V_{\mu}=\sum_{f} Q_{f} \bar{f} \gamma_{\mu} f
$$

- Optical Theorem

$$
\operatorname{Im}_{V}(s)=\frac{s}{4 \pi \alpha} \sigma_{\text {tot }}\left(e^{+} e^{-} \rightarrow X\right)
$$

- Analycity

$$
\begin{aligned}
& \Pi_{V}(s)-\Pi_{V}(0)=\frac{k^{2}}{\pi} \int_{4 m_{\pi}^{2}}^{\infty} d s \frac{\operatorname{Im} \Pi_{V}(s)}{s\left(s-k^{2}-i \epsilon\right)} \\
& \sim \sim_{\text {had }}^{\gamma}
\end{aligned}
$$

Leading order of hadronic contribution (HVP)

- Hadronic vacuum polarization (HVP)

$=\frac{\alpha}{\pi^{2}} \int_{m_{\pi}^{2}}^{\infty} \frac{d s}{s} \operatorname{Im} \Pi(s) K(s) \quad K(s)=\int_{0}^{1} d x \frac{x^{2}(1-x)}{x^{2}+\left(s / m_{\mu}^{2}\right)(1-x)}$
$=\frac{1}{3}\left(\frac{\alpha}{\pi}\right)^{2}\left[\int_{m_{\pi}^{2}}^{s_{\mathrm{cut}}} d s \frac{K(s)}{s} R_{\mathrm{had}}^{\mathrm{data}}(s)+\int_{s_{\mathrm{cut}}}^{\infty} d s \frac{K(s)}{s} R_{\mathrm{had}}^{\mathrm{pQCD}}(s)\right]$

Hagiwara, et al. J.Phys. G38,085003 (2011)

HVP from experimental data

- From experimental $\mathrm{e}+\mathrm{e}$ - total cross section $\sigma_{\text {total }}(\mathrm{e}+\mathrm{e}-)$ and dispersion relation

$$
a_{\mu}^{\mathrm{HVP}}=\frac{1}{4 \pi^{2}} \int_{4 m_{\pi}^{2}}^{\infty} d s K(s) \sigma_{\text {total }}(s)
$$

time like $\quad q^{2}=s>=4 m_{\pi}{ }^{2}$

$$
\begin{aligned}
& a_{\mu}^{\mathrm{HVP}, \mathrm{LO}}=(694.91 \pm 4.27) \times 10^{-10} \quad[\sim 0.6 \% \mathrm{err}] \\
& a_{\mu}^{\mathrm{HVP}, \mathrm{HO}}=(-9.84 \pm 0.07) \times 10^{-10} \quad[\quad
\end{aligned}
$$

c)
d)

HVP from Lattice

$$
\begin{aligned}
& \int d^{4} x\left\langle T\left\{V_{\mu}^{\mathrm{em}}(x) V_{\nu}^{\mathrm{em}}(0)\right\}\right\rangle e^{i Q x}=\left(Q^{2} \delta_{\mu \nu}-Q_{\mu} Q_{\nu}\right) \Pi_{V}\left(Q^{2}\right) \\
& a_{\mu}^{\mathrm{had}}=\frac{\alpha}{\pi^{2}} \int_{m_{\pi}^{2}}^{\infty} \frac{d s}{s} \operatorname{Im} \Pi(s) K(s)=\left(\frac{\alpha}{\pi}\right)^{2} \int_{0}^{\infty} d Q^{2} f\left(Q^{2}\right) 4 \pi^{2}\left[\Pi_{V}(0)-\Pi_{V}\left(Q^{2}\right)\right]
\end{aligned}
$$

Aubin, Blum, Phys. Rev.D75,114502 (2007), Feng, et al., Phys.Rev.Lett. 107, 081802 (2011), Bolye et al., Phys.Rev. D85,074504(2012), Della Morte, et al., JHEP 1203,055(2012),Aubin et al.,Phys.Rev.D86, 054509(2012)

Challenges in HVP on lattice

- Chiral extrapolation (unphysically heavy quark mass) \rightarrow We now have Mpi ~ 135 MeV QCD ensemble, so no problem for the next calculation !
- Need more data in small momentum q2 region
$p=2 \pi / L \times n \quad$ (need larger L, larger Vol)
\rightarrow exploring various ideas
twieak boundary conditions
(partially) Minkowskian/Time-like momentum
simply going to larger Volume
- Statistical error
\rightarrow A new class of error reduction technique
- Disconnected diagram / Higher Order
- Discretization error
- Isospin breaking effects

parameterize q2 dependence

- $\pi(q 2)$ at small $q^{2} \sim m_{\mu}^{2}$ region, which dominates the integral of HVP, is statistically noisier and sparse (small number of q 2 variation).
- By fitting $\pi(\mathrm{q} 2)$ for $\mathrm{q} 2<0(1) \mathrm{GeV}{ }^{\wedge} 2$
- extract $\pi(0)$ to subtract, $\pi(\mathrm{q} 2)-\pi(0)$
- perform the integration of HVP using the fit function

$$
\int_{0}^{Q_{C}^{2}} d Q^{2} f\left(Q^{2}\right) \times \hat{\Pi}\left(Q^{2}\right) \rightarrow \int_{0}^{1} d t f\left(Q^{2}\right) \times \hat{\Pi}\left(Q^{2}\right) \times \frac{Q^{2}}{t^{2}} \quad \text { where } \quad t=\frac{1}{1+\log \frac{Q_{C}^{2}}{Q^{2}}}
$$

Fit functions

- Vector Meson Dominance

$$
\Pi_{V}^{\text {tree }}\left(Q^{2}\right)=\frac{2}{3} \frac{f_{V}^{2}}{Q^{2}+m_{V}^{2}}
$$

- Multi point Pade fit [2012, Aubin et al.]

$$
\Pi\left(Q^{2}\right)=\Pi(0)-Q^{2}\left(a_{0}+\sum_{n=1}^{[P / 2]} \frac{a_{n}}{b_{n}+Q^{2}}\right)
$$

Conditions: $a_{n}>0, b_{n}>4 m_{\pi}^{2}$

Pade fit results

- solid: correlated fit (q2 <=0.6 GeV2) , dash : uncorrelated fit (q2 <= 1 GeV 2)

	$\chi^{2} /$ dof	$10^{10} a_{\mu}^{\mathrm{HLO}, Q^{2} \leq 1}$	$\Pi(0)$	a_{i}	b_{i}	a_{0}
VMD	$38.6 / 18$	$646(8)$	$0.1222(6)$	$0.0595(8)$	$0.64($ fixed $)$	-
$[0,1]$	$14.3 / 17$	$550(20)$	$0.1203(7)$	$0.0646(16)$	$0.83(5)$	-
$[1,1]$	$13.9 / 16$	$572(41)$	$0.1206(8)$	$0.052(16)$	$0.68(20)$	$0.005(7)$
$[1,2]$	$13.9 / 15$	$572(37)$	$0.1206(8)$	$0.052(14)$	$0.68(19)$	-
				$1(6)$	$0.3(1.0) \times 10^{3}$	
$[2,2]$	$13.9 / 14$	$572(38)$	$0.1206(8)$	$0.052(14)$	$0.68(18)$	$0.003(27)$
				$1(31)$	$0.4(6.0) \times 10^{3}$	

[Aubin et al. Phys. Rev. D 86 (2012) 054509]

■ Pade approximation converges, results stable.

Twisted boundary condition

- On a torus, the action must be singlevalued, while fields do not have to be.
- Impose the twisted boundary condition on quark fields.

$$
\begin{aligned}
q(x+L)= & q(x) \exp (i \theta) \\
\rightarrow \mathrm{p}= & (2 \pi \mathrm{n}+\theta) / \mathrm{L} \\
& (\theta: \text { arbitrary input })
\end{aligned}
$$

- q^{2} can be arbitrary small.
- Breaking isospin, Vector ward identity is broken, could be exactly subtracted [Aubin et al 2012]
- Noise in small q2

Exploring time-like mom
 [Eigo Shintani, Hyung-Jin Kim \& TI]

- To reduce systematic error

Transformation to time-like momentum using analytical continuation
Ji and Jung, Phys.Rev.Lett. 86, 208(2001); Dudek et al. Phys.Rev.Lett. 97 (2006) 172001;
Feng, et al.(JLQCD),Phys.Rev.Lett.109,182001(2012)

- Domain-wall fermion (RBC/UKQCD) in $\mathrm{N}_{\mathrm{f}}=2+1$
- $24^{3} \times 64\left(a^{-1}=1.73 \mathrm{GeV}\right), 32^{3} \times 64\left(a^{-1}=2.25 \mathrm{GeV}\right): \mathrm{m}_{\pi}=300--400$ MeV
- Good chiral property and scaling behavior.

Remark: precise determination of α_{s} with pQCD in high Q^{2}.

Shintani, et al.(JLQCD), Phys. Rev. D79, 074510 (2009); Shintani, et al.(JLQCD), Phys. Rev. D82, 074505 (2010)

Time-like momentum

- $\mathrm{Q}_{4}=i \omega$

$$
\begin{gathered}
\int d^{4} x\left\langle T\left\{V_{\mu}^{\mathrm{em}}(x) V_{\nu}^{\mathrm{em}}(0)\right\}\right\rangle e^{i q x}=\Pi_{\mu \nu}(\vec{q}, \omega)=\left(q^{2} g_{\mu \nu}-q_{\mu} q_{\nu}\right) \Pi_{V}\left(q^{2}\right) \\
q=(\omega, \vec{q}), \quad g_{\mu \nu}=\operatorname{diag}(1,-1,-1,-1), \quad q^{2}=\omega^{2}-\vec{q}^{2}=-Q^{2}
\end{gathered}
$$

- ω is "photon energy" which can be controlled by hand.
- Temporal integral from $-\infty<\mathrm{t}<\infty$ (Laplace transformation) $\Pi_{\mu \nu}(\vec{q}, \omega)=\int_{0}^{\infty} d t \sum_{\vec{x}} e^{-\omega t-i \vec{x} \vec{q}}\left\langle V_{\mu}(\vec{x}, t) V_{\nu}(0)\right\rangle_{c}+\int_{-\infty}^{0} d t \sum_{\vec{x}} e^{-\omega t-i \vec{x} \vec{q}}\left\langle V_{\nu}(0) V_{\mu}(\vec{x}, t)\right\rangle_{c}$
ρ state or $\pi \pi$ state

Resonance poles
$\begin{array}{llll}0 & -\vec{q}_{1}^{2} & -\vec{q}_{2}^{2} & -q^{2}\end{array}$

Time-like momentum

- Modeling large time behavior

To perform the infinite temporal integral, we need to model 2 pt at large time

$$
\begin{array}{ll}
\left.\sum_{\vec{x}} e^{i \vec{q} \vec{x}}\left\langle V_{\mu}(x) V_{\nu}(0)\right\rangle \simeq g_{v} e^{-E_{V} t}\right) & \begin{array}{ll}
\text { (asymptotic state dominance at } \mathrm{t} \geqq \mathrm{t}_{\text {cut }} \text {) } \\
\int_{0}^{t_{\text {cut }}} d t e^{-\omega t} \sum_{\vec{x}} e^{i \vec{q} \vec{x}}\left\langle V_{\mu}(x) V_{\nu}(0)\right\rangle \simeq \sum_{t=0}^{t_{\text {cut }}} C_{V V}(\vec{q}, \omega ; t) & \text { (numerical integral with } \\
& 0 \leqq \mathrm{t} \leqq \mathrm{t}_{\text {cut }} \text {) }
\end{array}
\end{array}
$$

Longitudinal part will be

$$
\Pi_{\text {long }}(\vec{q}, \omega)=\frac{g_{V}}{E_{V}+\omega} e^{-\left(E_{V}+\omega\right) t_{\text {cut }}}+\frac{g_{V}}{E_{V}-\omega} e^{-\left(E_{V}-\omega\right) t_{\text {cut }}}+\sum_{t=0}^{t_{\text {cut }}} 2 F(t) \cosh \omega t
$$

Finally we consider the particular momentum $q_{\mu} \neq 0, q_{j \neq \mu}=0$

$$
\Pi_{\text {long }}(\vec{q}, \omega)=-\omega^{2} \Pi_{V}\left(q^{2}\right), \quad q^{2}=\omega^{2}-q_{\mu}^{2}
$$

Time-like momentum result

- tm-Wilson quark (maximal twist)
- pion mass : $290 \mathrm{MeV}-650 \mathrm{MeV}$
- $a=0.08 \mathrm{fm}, 0.06 \mathrm{fm}$
[Xu Feng et al. [ETMC+JLQCD]
Phys.Rev. D88 (2013) 034505]
- larger stat. error than conventional method

HVP with time-like momentum

$\mathrm{t}_{\text {cut }}=9\left(24^{3}\right), 10\left(32^{3}\right)$
Fitting range at large t $[8,13]\left(24^{3}\right),[10,15]\left(32^{3}\right)$

- Similar behavior with results obtained in Euclid momentum
- Slight discrepancy from HVP in space-like momentum, especially for light mass.

More carefully systematic study is necessary!

Covariant Approximation Averaging (CAA) a new class of Error reduction techniques

Examples of Covariant Approximations (contd.)

- All Mode Averaging AMA
Sloppy CG or Polynomial approximations

$$
\begin{aligned}
& \mathcal{O}^{\text {(appx) }}=\mathcal{O}\left[S_{l}\right], \\
& S_{l}=\sum_{\lambda} v_{\lambda} f(\lambda) v_{\lambda}^{\dagger}, \\
& f(\lambda)= \begin{cases}\frac{1}{\lambda}, & |\lambda|<\lambda_{\mathrm{cut}} \\
P_{n}(\lambda) & |\lambda|>\lambda_{\mathrm{cut}}\end{cases} \\
& P_{n}(\lambda) \approx \frac{1}{\lambda}
\end{aligned}
$$

If quark mass is heavy, e.g. ~ strange,

accuracy control :

- low mode part : \# of eig-mode
- mid-high mode : degree of poly.

AMA at work

- Target : $V=32^{3} \times 64=(4.6 \mathrm{fm})^{3} \times 9.6 \mathrm{fm}$, Ls=32 ShamirDWF, $\mathrm{a}^{-1}=1.37 \mathrm{GeV}, \mathrm{Mpi}=170 \mathrm{MeV}$
- Use Ls=16 Mobius as the approximation [Brower, Neff, Orginos, arXiv:1206.5214]
- quark propagator cost on SandyBridge 1024 cores (XSEDE gordon@SDSC)
- non-deflated CG, r(stop)=1e-8 : ~9,800 iteration, 5.7 hours / prop
- Implicitly restarting Lanczos of Chebyshev polynomials of even-odd prec operator for 1000 eigenvectors [Neff et al. PRD64, 114509 (2001)] : 12 hours
- deflated CG with 1000 eigenvectors : ~700 iteration, $20 \mathrm{~min} / \mathrm{prop}$
- deflation+sloppy CG, r(stop)=5e-3 : ~125 iteration, $3.2 \mathrm{~min} / \mathrm{prop}$
- Multiplicative Cost reduction for General hadrons could combine with \{EigCG | AMG\} and Distillation:
x1.2 (Mobius) x 14 (deflation) x 7 (sloppy CG) $\simeq \underline{110}$

AMA at work

 [M. Lin]

- $F_{1}\left(Q^{2}\right)$: tsep $=9 \mathrm{a} \sim 1.3 \mathrm{fm}$

1 forward + 2 (up and down) seq-props, contraction cost is $\sim 15 \%$ of sloppy propagator

- Error bar

$$
\times 2-2.7 \sim \operatorname{sqrt}(4400 / 600)
$$

- Total cost reduction upto ($430 / 160$) * $(4400 / 600)$ ~ x 19.7
- Note this is still sub-optimal, 4 exact source and without deflation. (would be x30 for 2 exact sources)
- non-deflated CG, 150 config $\times 4$ sources $=600$ measurements :
5.7 * $3^{*} 4$ * 150 config $=10 \mathrm{~K}$ hours, 430 days
- AMA : 39 config, 4 exact solves / config (perhaps overkill) , $\mathrm{N}_{\mathrm{G}}=112$ sloppy solves => $39 \times 112=4400$ AMA measurements :
$(5.7$ * 3 * $4+12+0.06 * 3 * 112) * 39$ config $=3.9 \mathrm{~K}$ hours, 160 days
4-exact (68\%) + Lanczos (12\%) + sloppy CG (20\%)

Improving HVP statistics using AMA

■ Staggered Fermion (MILC Asqtad, Mpi=300 MeV) 2.6 -- 20 times smaller error with same cost

Now getting to
all stat error < 2\%
$q \mathrm{~min}^{\wedge} 2=1.5 \mathrm{~m}(\mathrm{mu})$

RBC/UKQCD DWF AMA Results

- Two lattice spacings $\mathrm{a}=0.11,0.088 \mathrm{fm}$, Mpi=0.28-0.33 GeV All stat err < 0.7\% q_min $=2 \mathrm{~m}(\mathrm{mu})$
- Applied [2,1] Pade, can't fit with
b1 >= $4 \mathrm{Mpi}^{\wedge} 2$ bound

Lattice	m_{u}	$\Pi_{\mathrm{V}}(0)$	$a_{0}\left(\mathrm{GeV}^{-2}\right)$	a_{1}	$b_{1}\left(\mathrm{GeV}^{2}\right)$	χ^{2} / dof	$4 \mathrm{~m}_{\pi}^{2} \mathrm{GeV}^{2}$
$24^{3} \times 64$	0.005	$0.1752(2)$	$0.0325(2)$	$0.0407(1)$	$0.139(1)$	$2.7(4)$	0.44
	0.01	$0.1603(2)$	$0.0219(3)$	$0.0434(4)$	$0.408(7)$	$0.4(1)$	0.71
$32^{3} \times 64$	0.004	$0.197(2)$	$0.026(3)$	$0.052(3)$	$0.227(37)$	$0.08(7)$	0.31
	0.006	$0.190(3)$	$0.027(7)$	$0.043(11)$	$0.253(25)$	$0.4(5)$	0.44

Subtraction Strategy: Derivative of Twisting Angle [Divitiis et al. PLB 718(2012) 589]

$$
\begin{aligned}
\square \mathrm{p}_{\mathrm{i}} & =\left(2 \pi \mathrm{n}+\theta_{\mathrm{i}}\right) / \mathrm{L} \\
C^{\mu v}(p) & =\frac{1}{\left(T L^{3}\right)^{2}} \sum_{x, y} e^{i p(y-x+\hat{v} / 2-\hat{\mu} / 2)}\left(V_{e m}^{\mu}(x) V_{e m}^{v}(y)\right) \\
& =\left(\delta^{\mu v} \hat{p}^{2}-\hat{p}^{\mu} \hat{p}^{\nu}\right) \Pi\left(p^{2}\right),
\end{aligned}
$$

$$
\Pi(0)=-\left.\frac{\partial^{2} \hat{C}^{12}(p)}{\partial p_{1} \partial p_{2}}\right|_{p^{2}=0}
$$

Use of Time-Moments [HPQCD]

- Compute Time-moments of 2pt [P. Lepage's talk]

$$
\begin{aligned}
G_{2 n} & \equiv a^{4} \sum_{t} \sum_{\vec{x}} t^{2 n} Z_{V}^{2}\left\langle j^{i}(\vec{x}, t) j^{i}(0)\right\rangle & & \hat{\Pi}\left(q^{2}\right)=\sum_{j=1}^{\infty} q^{2 j} \Pi_{j} \\
& =\left.(-1)^{n} \frac{\partial^{2 n}}{\partial q^{2 n}} q^{2} \hat{\Pi}\left(q^{2}\right)\right|_{q^{2}=0} . & & \Pi_{j}=(-1)^{j+1} \frac{G_{2 j+2}}{(2 j+2)!}
\end{aligned}
$$

- subtraction by taking derivatives, use local currents
- Pade approximation, determined from Πj, for high q2 integration

$$
\begin{aligned}
& a_{\mu}^{s}=53.41(59) \times 10^{-10} . \\
& {[1.1 \% \sim \text { lattice spacing error] }} \\
& a_{\mu}^{c}=14.42(39) \times 10^{-10} . \\
& {[2.7 \% \sim \text { Z_V error] }}
\end{aligned}
$$

Recent results

roughly

5-10 \% error

[BMW Collaboration, 1311.4446]

a_{μ}	N_{f}	errors	action	group
$713(15)$	$2+1$	stat.	Asqtad	Aubin, Blum (2006)
$748(21)$	$2+1$	stat.	Asqtad	Aubin, Blum (2006)
$641(33)(32)$	$2+1$	stat., sys.	DWF	UKQCD (2011)
$572(16)$	2	stat.	TM	ETMC (2011)
$618(64)$	$2+1^{1}$	stat., sys.	Wilson	Mainz (2011)

HVP Summary and future prospects

- Lattice HVP issues
- Parameterize / Fit low Q2
\rightarrow Model Independent Pade, Time-moments of HVP
(error from parameterization dependence)
- More precise data at low Q2
\rightarrow Twisted B.C. , Derivatives of twist angle, Time-like momentum, or simply large volume
- Discretization error, Quark Mass dependence
$\rightarrow \mathrm{Nf}=2+1,2+1+1$, Physical quark mass calculations are running
- Statistical error
\rightarrow All Mode Averaging (AMA) helps to reduction of statistical error.
- Disconnected quark loop
- EM Isospin / wall

