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SM Theory 	


!  QED, hadronic, EW contributions 
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muon’s anomalous magnetic moment

• One of the most precisely determined numbers, starting from the construction of QED.
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Hadronic light-by-light scattering contribution to the muon g� 2 from lattice QCD Masashi Hayakawa

could be estimated by purely theoretical calculation. So far, it has been calculated only based on
the hadronic picture [7, 8]. Thus the first principle calculation based on lattice QCD is particularly
desirable.
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Figure 1: hadronic light-by-light scattering contribution to the muon g� 2

The diagram in Fig. 1 evokes the following naive approach; we calculate repeatedly the cor-
relation function of four hadronic electromagnetic currents by lattice QCD with respect to two
independent four-momenta l1, l2 of off-shell photons, and integrate it over l1, l2. Such a task is too
difficult to accomplish with use of supercomputers available in the foreseeable future.

Here we propose a practical method to calculate the h-lbl contribution by using the lattice
(QCD + QED) simulation; we compute
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amputate the external muon lines, and project the magnetic form factor, and divide by the factor
3. In Eq. (2) the red line denotes the free photon propagator D!�(x, y) in the non-compact lat-
tice QED solved in an appropriate gauge fixing condition. The black line denotes the full quark
propagator Sf (x, y;U, u) for a given set of SU(3)C gauge configuration

�
Ux,!
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and U(1)em gauge

configuration
�
ux,!

⇥
, where the sum over relevant flavors f is implicitly assumed. The blue line

represents the full muon propagator s(x, y; u). The average ⇥, ⇤ above means the one over the
unquenched SU(3)C gauge configurations and/or the quenched U(1)em gauge configurations 1 as
specified by the subscript attached to it. Since two statistically independent averages overU(1)em
gauge configurations appear in the second term, they are distinguished by the labels A, B.

1For the unquenched QCD plus quenched QED to respect the gauge invariance of QED, the electromagnetic charges
of sea quarks are assumed to be zero.
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aµ =
g � 2

2
= (116 592 089 ± 54 ± 33) ⇥ 10�11 BNL-E821

[Andreas Hoecker, Tau 2010, arXiv:1012.0055 [hep-ph]]

Contribution Result (⇥10�11).
QED (leptons) 116 584 718.09 ± 0.15
HVP (lo) 6 923.± 42
HVP (ho) -97.9 ± 0.9
HLBL 105.± 26
EW 154.± 2

Total SM 116 591 802 ± 42HVP(lo) ± 26HLBL ± 02 (49tot).

• 287 ± 80 or 3.6⇥ difference between experiment and SM prediction.

E989 at FNAL is to reduce the total experimental error by,
at least, a factor of four over E821, or 0.14 ppm !

Taku Izubuchi, USQCD All Hands Meeting, JLab, May 6, 2011 20



SM Theory prediction	


!  QED, EW, Hadronic contributions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

!  Discrepancy between EXP and SM is larger than EW! 
!  Currently the dominant uncertainty comes from HVP, followed by HLbL 
!  Theoretical estimate of HLbL  is really under control? 
!  LQCD ➡ the first principles’ estimate for the hadronic parts.	


EQUATIONS

N. YAMADA

aSM
µ = (11 659 182.8 ± 4.9) × 10−10 (using [1])(1)

aEXP
µ = (11 659 208.9 ± 6.3) × 10−10 [PDG](2)

aEXP
µ − aSM

µ = (26.1 ± 8.0) × 10−10(3)

Breakdown
aSM

µ = (11 659 182.8 ±4.9 ) × 10−10

aQED
µ = (11 658 471.808 ±0.015 ) × 10−10

aEW
µ = ( 15.4 ±0.2 ) × 10−10

ahad,LOVP
µ = ( 694.91 ±4.27 ) × 10−10

ahad,HOVP
µ = ( −9.84 ±0.07 ) × 10−10

ahad,lbl
µ = ( 10.5 ±2.6 ) × 10−10

V (x) = −µ⃗l · B⃗(4)

µ⃗l = gl
e

2ml
S⃗l(5)

al =
gl − 2

2
(6)

Γµ(q) = γµ F1(q
2) +

iσµνqν

2 ml
F2(q

2)(7)

F1(q
2) = 1, F2(q

2) = 0(8)

F1(0) = 1, F2(0) = al(9)

al = F2(0)(10)
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(g-2)μ　theory vs  experiment	
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[K. Hagiwara et al., J. Phys. G 38, 085003 (2011)]

aexp
µ − aSM

µ = (26.1 ± 8.0) · 10−10 [3.3σ] for aHLxL
µ = (10.5 ± 2.6) · 10−10

(aexp
µ − aSM

µ = (25.0 ± 8.6) · 10−10 [2.9σ] for aHLxL
µ = (11.6 ± 4.0) · 10−10)

!  ~ 3σ discrepancy ? 
 
!  SM prediction 

 
→ Hadronic uncertainties ?	
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Leading order of hadronic 
contribution (HVP)	


!  Hadronic vacuum polarization (HVP) 
                
 
  quark’s EM current :  

!  Optical Theorem  
 
!  Analycity 
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Vμ	
 Vν　	


Vµ =
X

f

Qf f̄�µf

= (q2gµ� � qµq�)�V (q
2)

Im�V (s) =
s

4⇥�
⇤
tot

(e+e� ! X)

�V (s)��V (0) =
k2

⇥

Z 1

4m2
⇡

ds
Im�V (s)

s(s� k2 � i�)

Dispersion relations and VP insertions in g � 2

Starting point:
� Optical Theorem (unitarity) for the photon propagator

Im�⇤⇥(s) =
s

4⇤�
⌅tot(e+e� ⇥ anything)

� Analyticity (causality), may be expressed in form of a so–called (subtracted)
dispersion relation

�⇤⇥(k
2) � �⇤⇥(0) =

k2

⇤

⌅�

0

ds
Im�⇤⇥(s)

s (s � k2 � i⇧)
.

� �
had ⇥

�
� had
� (q2)

�

had

2

� ⇥had
tot (q2)

F. Jegerlehner SFB/TR 09 Meeting, Aachen, November 14, 2011 68



Leading order of hadronic 
contribution (HVP)	


!  Hadronic vacuum polarization (HVP) 	


×	


Hagiwara,	
  et	
  al.	
  
J.Phys.	
  G38,085003	
  
(2011)	


ρ	
 ω	
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HVP from experimental data	


!  From experimental e+ e- total cross section   
σtotal(e+e-) and dispersion relation 

 

   time like   q2 = s >= 4 mπ
2 

EQUATIONS

N. YAMADA

aHVP
µ =

1

4π2

∫ ∞

4m2
π

dsK(s)σtotal(s)(1)

Πµν(q
2) =

∫
d4x

(2π)4
e−iq·x⟨0|T [jµ(x)jν(0)]|0⟩|0⟩(2)

Γ(Hlbl)
µ (p2, p1) = ie6

∫
d4k1

(2π)4

d4k2

(2π)4

Π(4)
µνρσ(q, k1, k3, k2)

k2
1 k2

2 k2
3

×γνS
(µ)(p2 + k2)γρS

(µ)(p1 + k1)γσ

Π(4)
µνρσ(q, k1, k3, k2) =

∫
d4x1 d4x2 d4x3 exp[−i(k1 · x1 + k2 · x2 + k3 · x3)]

×⟨0|T [jµ(0)jν(x1)jρ(x2)jσ(x3)]|0⟩

aSM
µ = (11 659 182.8 ± 4.9) × 10−10 (using [1])(3)

aEXP
µ = (11 659 208.9 ± 6.3) × 10−10 [PDG](4)

aEXP
µ − aSM

µ = (26.1 ± 8.0) × 10−10(5)

Breakdown

aSM
µ = (11 659 182.8 ±4.9 ) × 10−10

aQED
µ = (11 658 471.808 ±0.015 ) × 10−10

aEW
µ = ( 15.4 ±0.2 ) × 10−10

ahad,LOVP
µ = ( 694.91 ±4.27 ) × 10−10

ahad,HOVP
µ = ( −9.84 ±0.07 ) × 10−10

ahad,lbl
µ = ( 10.5 ±2.6 ) × 10−10

Date: July 10, 2012.
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✕

aHVP,LO
µ = (694.91± 4.27)⇥ 10�10

aHVP,HO
µ = (�9.84± 0.07)⇥ 10�10

“Trick” applies to higher order hadronic VP contributions

h e h h h
µ

�

h

a) b) c) d)

Kinoshita, Nizic, Okamoto 1985, Krause 1996, ...
as well as to analytic calculations of higher order diagrams like

Ia Ib Ic Id
µ

�1

�2
�3 �1

�2
�1 �2

�1

3–loop: Hoang et al 95, 4–loop: Broadhurst, Kataev, Tarasov 93, Kinoshita et al
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HVP from Lattice	

 
 

 

 Aubin,	
  Blum,	
  Phys.	
  Rev.D75,114502	
  (2007),	
  	
  Feng,	
  et	
  al.,	
  Phys.Rev.Leg.	
  107,	
  081802	
  (2011),	
  
Bolye	
  et	
  al.,	
  Phys.Rev.	
  D85,074504(2012),	
  	
  Della	
  Morte,	
  et	
  al.,	
  JHEP	
  1203,055(2012),Aubin	
  et	
  
al.,Phys.Rev.D86,	
  054509(2012)	


Q2
cut	
  ⋍ 1	
  GeV2	


pQCD	
  :	
  well	
  describe	
  
la,ce	
  data	
  

Aubin	
  	
  et	
  al.	
  (2007),	
  (2012)	


• 	
  	
  InterpolaOon	
  and	
  
extrapolaOon	
  to	
  Q2	
  =	
  0	
  
⇒ systemaOc	
  error	
  
• 	
  	
  Large	
  staOsOcal	
  error	
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Q2	
  =	
  -­‐q2	
  >	
  0	
  	
  	
  (Euclidean/space-­‐like	
  momentum)	


[	
  T.	
  Blum	
  PRL91	
  (2003)	
  052001	
  ]	




Challenges in HVP on lattice	


!  Chiral extrapolation (unphysically heavy quark mass)   → We now have Mpi 
~ 135 MeV QCD ensemble, so no problem for the next calculation !   

!  Need more data in small momentum q2 region 
     p = 2π/L  x n     ( need larger L , larger Vol) 
     → exploring various ideas 
        twieak boundary conditions 
        (partially) Minkowskian/Time-like momentum 
        simply going to larger Volume 
 
!  Statistical error 

   →  A new class of error reduction technique  
 
 
!  Disconnected diagram / Higher Order  
!  Discretization error 
!  Isospin breaking effects ….. 

	


✕



parameterize q2 dependence 	

!  π(q2)  at small q2 ~ mµ

2 region, which dominates the integral of HVP,  is 
statistically noisier and sparse (small number of q2 variation). 

!  By fitting π(q2)  for q2 < O(1) GeV^2 
•  extract  π(0)  to subtract,  π(q2)-π(0) 
•  perform the integration  of HVP using the fit function	


and this defines the band in which m1 was constrained to
reside in the fixed version of this fit. We have not attempted
to modelOð4Þ breaking effects present in our data. Though
such effects do appear to be present to a moderate degree
on certain ensembles, they do not prevent the extraction of
a reasonable signal from our data at this point. These
effects could also be alleviated by the use of twisted
boundary conditions [24].

B. Evaluation of (3.1)

Illustrations of the integrand can be seen in Fig. 5.
Because the integrand is dominated by contributions in
the low-momentum region, we change our integration
measure to better sample the region of interest. To do
this, we make the change of variables

t ¼ 1

1þ log
Q2

C

Q2

(3.5)

and so the integral over the low-momentum region be-
comes

Z Q2
C

0
dQ2fðQ2Þ % !̂ðQ2Þ !

Z 1

0
dtfðQ2Þ % !̂ðQ2Þ %Q2

t2
:

(3.6)

Overlaid on the depiction of the integrand in Fig. 5 is the
appropriately subtracted and rescaled vacuum polarization
data. We see from this that, while a large portion of the
constraint on the fit is consistently derived from data at
higher momentum, the fit is always consistent with the data
at low momentum, the region where the integral receives
the dominant contribution.
In particular, in Fig. 5(b) we see that on the larger

lattices at ! ¼ 1:75 using the Iwasakiþ DSDR action,
the data point at the lowest momentum sits exactly where
the integrand reaches a maximum, and there are numerous
data points in the dominant region, constraining the fit.
Clearly, using lattices of such size will help in obtaining a
precise result for this quantity, and this must be combined
with the use of twisted boundary conditions [14] in order to
access data at lower values of the lattice momentum.

IV. RESULTS

We extract our final results from the fit using (3.4) with
the first mass fixed to that of the vector meson as measured
on each ensemble. Observing the behavior of the reduced
"2 as the fit range is varied, we choose a suitable value for
Q2

C for each ensemble which provides the most reliable
result. We attempt to choose a cut which provides a low
reduced "2 preferably where the parameter m1 agrees
without tension with mV. This produces the results shown
in Table III, where we also quote the reduced "2 of the fit,
and the resulting values of the remaining associated free
parameters.
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FIG. 4 (color online). Value of the fit parameter am1 in fits
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The vector mass amV as determined on this lattice is shown in
green. Note in the fit wherem1 was fixed, it was only constrained
to lie within the green band. It is clear that for a high Q2

C, m1 will
emerge at the upper limit of the band, indicating some tension
between the fit-form and the data, but as can be seen in Fig. 3,
this has very little impact on the goodness of the fit.
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Fit functions	


!  Vector Meson Dominance 
 
 
!  Multi point Pade fit   [ 2012, Aubin et al.] 

   Conditions :   an >0,   bn >  4 mπ
2 

 

	


Parametriza@on%and%strategy%

Furthermore,%can%prove%that%(Baker,%Barnsley)%

with%%%%%%%%%%%%%%%%(posi@ve%residues)%and%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%(all%poles%on%cut),%
%%%%%%%%%%%%%%for%%%%%%even%.%

Fit%this%form%for%%%%%%%%%%%%%%%%%%%%%%%%%%%;%yields%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%PAs.%%%

Compute%

Note:%%%VMD%%is%same%as%%%%%%%%%%%%%PA%with%%%%%%%%%%%%%%%%%%%%fixed;%%NOT%a%(valid)%PA!%%%%%%%%

⇧(Q2) = ⇧(0)�Q2

0

@a0 +

[P/2]X

n=1

an
bn +Q2

1

A

an > 0 b[P/2] > · · · > b1 > 4m2
⇡

a0 = 0 P

P = 2, 3, 4, 5 [0, 1], [1, 1], [1, 2], [2, 2]

aHLO,Q21
µ = 4↵2

Z 1 GeV2

0
dQ2 f(Q2)

�
⇧(0)�⇧(Q2)

�

[0, 1] b1 = m2
⇢

• Firstly, the chosen expression must describe the data closely, and must do so re-
gardless of the range of data included in the fit. As such we require the reduced �2

of the fit to be consistently low as a function of Q2
C

which defines the range of data
in the fit.

• Secondly, in order to deduce that the fit-form results in an integral over momentum
which is relatively stable, we desire that the result for a(2)had

µ

is again relatively
stable as a function of Q2

C

.

Ref. [13] also illustrated the use of a fit form originating in the expression for the
vacuum polarisation calculated in chiral perturbation theory. The dominant component
of this expression is due to the vector meson contribution, which at tree-level is

⇧tree

V

(Q2) =
2

3

f 2
V

Q2 +m2
V

(3.2)

where the vector decay constant f
V

is defined

h⌦|J
µ

|V, p, ✏i = m
V

f
V

✏
µ

(p). (3.3)

Motivated by this expression the fit-form we use is closely related, di↵ering only in
the inclusion of the contribution of an additional vector resonance,

⇧(Q2) = A� F 2
1

Q2 +m2
1

� F 2
2

Q2 +m2
2

. (3.4)

The one-loop contribution from the pseudoscalar sector, shown in [13] to have small
momentum dependence, will not strongly a↵ect our results and so, in our e↵ort to make
a continuous description of the lattice data, it will be omitted from our fit ansatz.

We fit the lattice vacuum-polarisation data in two ways:

• Firstly using A, F1,2 and m1,2 as free parameters.

• Also, fixing the parameter m1 to the mass of the vector meson mV as measured in
[19]. This we do by constraining m1 to lie in the one-sigma band defined by the
estimate of mV and its variance. This method was found to maintain the stability
of the fit routine, while incorporating the extra information provided by mV. In
this fit A, F1,2 and m2 remain as true free parameters.

The behaviour of such fits are shown in Fig. 3. Clearly such a form is a very good
representation of the data, over practically the whole range of Q2

C

. In addition the

results for a(2)had
µ

using such fits are very stable as the fit range is varied, allowing far
greater confidence in the reliability of the result. In particular we conclude that using
a fit form (3.4) with the mass of the first pole fixed to the ground-state vector meson
mass to be the optimal method of describing the lattice data for the hadronic vacuum
polarisation.

In Fig. 4 we see the value of the fit parameter m1 from (3.4) as determined from fits to
the lattice vacuum polarisation. The value of mV obtained in [19] is shown in green, and
this defines the band in which m1 was constrained to reside in the fixed version of this fit.
We have not attempted to model O(4) breaking e↵ects present in our data. Though such
e↵ects do appear to be present to a moderate degree on certain ensembles, they do not
prevent the extraction of a reasonable signal from our data at this point. These e↵ects
could also be alleviated by the use of twisted boundary conditions [24].
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Pade fit results	


!  solid: correlated fit (q2 <=0.6 GeV2) , 
 dash : uncorrelated fit (q2 <= 1 GeV2) 
 
 
 
 
 
 
 
 

!  Pade approximation converges, results stable. 
	


FIG. 1: [1, 1] fits of Tables 1 (correlated, solid curve) and 2 (uncorrelated, dashed curve) compared
with data. Solid points have been included in the correlated fit while both solid and open points have

been included in the uncorrelated fit.

VMD fit a fitting interval 0 < Q2 ≤ 0.35 GeV2 leads to the lowest χ2 per degree of freedom.
With χ2/dof ≈ 2, the VMD fit is not very good. It is already much better for the [0, 1] PA,
in which the constraint on b1 is relaxed, and it decreases further, to an acceptable value, for
the [1, 1] PA.

Table 2 shows similar fits, but here all fits are uncorrelated. All errors have been esti-
mated using a linear fluctuation analysis starting from the uncorrelated χ2, starting from
the full data covariance matrix [15]. These errors agree with errors computed under a single-
elimination jackknife. In these PA fits we have relaxed the constraint b1 ≥ 4m2

π = 0.906 GeV2

(on this data set), but one notes that the values of b1 are consistent with this bound within
errors. Both correlated and uncorrelated [1, 1] PA fits are shown in Fig. 1.

The uncorrelated VMD fit reproduces “fit A” of Ref. [3], including the error.8 One notes
that the uncorrelated PA fits lead to results consistent with those of Table 1, but with much
larger errors. The uncorrelated VMD fit is not consistent with what we would expect to be
the best fit,

aHLO,Q2≤1
µ = 350(8)× 10−10 , (4.1)

from the [1, 1] PA of Table 1.
We may also compare the values in the tables with values obtained from a fit with a

fourth order polynomial in Q2, which are

aHLO,Q2≤1
µ = 410(91)× 10−10 , (uncorrelated) , (4.2)

aHLO,Q2≤1
µ = 346(8)× 10−10 , (correlated) .

8 The parameters Π(0) and a1 are not the same as the parameters A and fV of Ref. [3].
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χ2/dof 1010aHLO,Q2≤1
µ Π(0) ai bi a0

VMD 38.6/18 646(8) 0.1222(6) 0.0595(8) 0.64 (fixed) –

[0, 1] 14.3/17 550(20) 0.1203(7) 0.0646(16) 0.83(5) –

[1, 1] 13.9/16 572(41) 0.1206(8) 0.052(16) 0.68(20) 0.005(7)

[1, 2] 13.9/15 572(37) 0.1206(8) 0.052(14) 0.68(19) –

1(6) 0.3(1.0) × 103

[2, 2] 13.9/14 572(38) 0.1206(8) 0.052(14) 0.68(18) 0.003(27)

1(31) 0.4(6.0) × 103

TABLE 3: PA fits to the a = 0.06 fm, amlight = 0.0018 data for Π(Q2) with Q2 ≤ 0.53 GeV2.

Correlated fits; χ2 errors.

χ2/dof 1010aHLO,Q2≤1
µ Π(0) ai bi a0

VMD 37.2/51 685.2(7.8) 0.1236(6) 0.0631(7) 0.64 (fixed) –

[0, 1] 13.9/50 555(22) 0.1208(8) 0.0666(7) 0.85(4) –

[1, 1] 12.0/49 645(66) 0.1221(13) 0.047(5) 0.54(11) 0.0071(21)

[1, 2] 11.4/48 788(482) 0.123(4) 0.015(20) 0.2(4) –

0.063(14) 1.4(9)

[2, 2] 11.3/47 837(627) 0.124(5) 0.018(5) 0.2(5) 0.022(9)

0.22(6) 3.9(6)

TABLE 4: PA fits to the a = 0.06 fm, amlight = 0.0018 data for Π(Q2) with Q2 ≤ 1 GeV2.

Uncorrelated fits; errors from linear fluctuation analysis. For the [1, 2] and [2, 2] fits, b1 is at the
limit 4m2

π = 0.1936 GeV2 (for this ensemble), which was enforced in those fits.

The first line is in agreement with Ref. [3], and was fitted with 0 < Q2 ≤ 1 GeV2, as in
Table 2, and the second is from a correlated fit on the interval 0 < Q2 ≤ 0.6 GeV2, as in
Table 1. The latter fit has a χ2/dof of 7.48/6, less good than the [1, 1] fit in Table 1. Both
are in good agreement with Eq. (4.1), given the size of the errors.

B. a = 0.06 fm data at mlight/mstrange = 0.1

For our second example, we consider the vacuum polarization computed on MILC con-
figurations at a = 0.06 fm and amlight = 0.0018, which is about 1/10 times the physical
strange quark mass. Correlated fits are shown in Table 3, where we fitted the data for
0 < Q2 ≤ 0.53 GeV2 (which corresponds to the 20 data points with the lowest values of
Q2). The χ2 values per degree of freedom of the fits in Table 3 are slightly smaller than
one, except for the VMD fit, for which χ2/dof is about two.9 We find that the value of
χ2/dof increases if we fit over a larger range of Q2 values, and we will therefore take the

9 We thank Doug Toussaint for providing us with an unpublished rough estimate of the ρ mass for this data

set.
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Twisted boundary condition	


!  On a torus, the action must be single-
valued, while fields do not have to 
be. 

!  Impose the twisted boundary 
condition on quark fields. 
 

   q(x+L) = q(x)exp(iθ)   
       →   p =( 2π n  + θ)/ L 
                    (θ:arbitrary input) 
 
!  q2 can be arbitrary small. 

 
  

!  Breaking isospin, Vector ward identity 
is broken, could be exactly 
subtracted  [ Aubin et al 2012]  

!  Noise in small q2 
 	


Introduction
The hadronic vacuum polarization (HVP) contribution (O(�2))

The hadronic light-by-light (HLbL) contribution (O(�3))
aµ Implications for new physics

Summary/Outlook

aµ(HVP) [talk by Benni Jaeger (Mainz group)]

ahad
µ / 10-10

m2
� [GeV2]

m2
�,phys

PRELIMINARY

Nf = 2
� = 5.2, L = 2.5 fm
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periodic bc
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�fit(q2)
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� �(q2) with Twisted BC’s

� Pade fits

� m� � 195 MeV

� several lattice spacings

� increasing statistics

Tom Blum (UConn and RIKEN BNL Research Center) The muon anomalous magnetic moment

B. Jaeger [Mainz group] @ Lattice 2012



Exploring time-like mom  
[ Eigo Shintani, Hyung-Jin Kim & TI ]	


!  To reduce systematic error 
Transformation to time-like momentum using analytical continuation 

 
 

!  Domain-wall fermion (RBC/UKQCD) in Nf = 2+1 
•  243×64 (a-1 = 1.73 GeV), 323×64 (a-1 = 2.25 GeV):  mπ = 300--400 

MeV 
•  Good chiral property and scaling behavior. 

    Remark: precise determination of αs with pQCD in high Q2. 

Shintani,	
  et	
  al.(JLQCD),	
  Phys.	
  Rev.	
  D79,	
  074510	
  (2009);	
  Shintani,	
  et	
  al.(JLQCD),	
  Phys.	
  Rev.	
  D82,	
  
074505	
  (2010)	
  	
  

Ji	
  and	
  Jung,	
  Phys.Rev.Leg.	
  86,	
  208(2001);	
  Dudek	
  et	
  al.	
  Phys.Rev.Leg.	
  97	
  (2006)	
  172001;	
  
Feng,	
  et	
  al.(JLQCD),Phys.Rev.Leg.109,182001(2012)	
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Time-like momentum	


!  Q4 = iω 

 
•  ω is “photon energy” which can be controlled by hand. 
•  Temporal integral from -∞ < t < ∞ (Laplace transformation) 

0	
 -­‐q2	
Resonance	
  poles	


ρ	
  state	
  or	
  ππ	
  state	
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Time-like momentum	


!  Modeling large time behavior	

To	
  perform	
  the	
  infinite	
  temporal	
  integral,	
  we	
  need	
  to	
  	
  model	
  2pt	
  at	
  	
  large	
  Ome	
  	


(asymptoOc	
  state	
  dominance	
  at	
  t	
  ≧tcut	
  )	


(numerical	
  integral	
  with	
  
la,ce	
  data	
  from	
  	
  
0	
  ≦t	
  ≦ tcut	
  )	


Longitudinal	
  part	
  will	
  be	
  	


Finally	
  we	
  consider	
  the	
  parOcular	
  momentum	
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Time-like momentum result	


!  tm-Wilson quark (maximal 
twist) 

!  pion mass :  290 MeV – 650 MeV 
!  a = 0.08 fm, 0.06 fm 

 
 
[ Xu Feng et al. [ETMC+JLQCD] 

     Phys.Rev. D88 (2013) 034505 ] 
 
!  larger stat. error than 

conventional method 
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FIG. 3: Π̄(K2; tmax)+ Π̄(K2; t > tmax) as a function of K2. We use the same ensemble as in Fig. 2.

K2, which cover both the spacelike and timelike momentum domain. For some momen-

tum modes, e.g., |n|2 = 1, small discrepancies appear in the HVP functions for different

polarization directions, which we attribute to finite-size effects. As a next step we evaluate

these finite-size effects using Eq. (34). The results for Π̄(K2; tmax) + Π̄(K2; t > tmax) are

shown in Fig. 3. After adding the contribution of Π̄(K2; t > tmax) the results for differ-

ent polarization directions turn out to be more consistent. This finding suggests that the

discrepancies for Π̄(K2; tmax) do originate from finite-size effects, which then constitute the

dominant systematic effect in our calculation.

Since the HVP functions are consistent among various momentum modes and polarization

directions, we can average them to obtain the final result. Here we perform a weighted

average with a weight of 1/σ2
stat, where σstat is the relative statistical error of Π̄(K2; tmax)

(or Π̄(K2; tmax) + Π̄(K2; t > tmax)). Particularly at K2 = 0 we show in the upper panel

of Fig. 4 the averaged result for Π̄(0; tmax) = −0.2047(20) and in the lower panel the one

for Π̄(0; tmax) + Π̄(0; t > tmax) = −0.2069(21). These results deviate at the 1 σ level,

demonstrating that finite-size effects are comparable to the statistical error.

Up to now, the analysis is performed for the case of Nf = 2 flavors. To allow for a direct
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FIG. 6: ahvpµ̄ as a function of the squared pion mass. For each ensemble, the empty symbols

stand for the results calculated using the analytic continuation method. We have averaged ahvpµ̄ for

various momentum modes (|n|2 = 1, 2, 3) and polarization directions. In the upper panel, we show

ahvpµ̄ (tmax), which are calculated using the correlator Cµν(k⃗, t) covering the range −tmax ≤ t ≤ tmax.

In the lower panel, we show the total contribution of ahvpµ̄ (tmax)+ahvpµ̄ (t > tmax), where an estimate

of the finite-size effects has been added. The filled symbols indicate the results for ahvpµ̄ from the

conventional parametrization method.

Going to the case of Nf = 2 flavors, we find after the finite-size correction, consistent

results for ahvpµ for all ensembles and also an agreement with results computed earlier by us

using the conventional approach. We therefore conclude that applying a cut in the Euclidean

time induces indeed a finite-size effect as the dominant systematic error. Thus, when the

analytic continuation method is applied on larger lattices in the future, any assumption such

as the here employed ground state dominance at large times can be completely avoided,

leading to a conceptually clear determination of quantities derived from the HVP function.

In this way it would not be required anymore to rely on model dependent parametrizations

that enter some of the conventional computations of ahvpµ . On the negative side, it needs
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HVP with time-like momentum 	


!   preliminary 	

tcut	
  =	
  9	
  (243),	
  10	
  (323)	
  
Fi,ng	
  range	
  at	
  large	
  t	
  
[8,13]	
  (243),	
  [10,15]	
  (323)	
  
	
  
• 	
  	
  Similar	
  behavior	
  with	
  
results	
  obtained	
  in	
  Euclid	
  
momentum	
  
	
  
• 	
  	
  Slight	
  discrepancy	
  from	
  
HVP	
  in	
  space-­‐like	
  
momentum,	
  	
  especially	
  
for	
  light	
  mass.	
  

More	
  carefully	
  
systemaOc	
  study	
  is	
  
necessary	
  !	
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!  O(imp) has smaller error 
O(appx) need to be cheap &  not to be too 
accurate  
NG  suppresses the bulk part of noise cheaply 
        

Expensive	
  	
  :	
  	
  infrequently	
  measured	
  	
 Cheap	
  	
  	
  :	
  	
  frequently	
  measured	
  	


La,ce	
  
Symmetry	


Covariant Approximation Averaging ( CAA )  
 a new class of Error reduction techniques	


[	
  Blum,	
  TI,	
  Shintani	
  PRD	
  88	
  (2013)	
  094503	
  ]	


Original	


unbiased	
  
imporved	


ensemble	


ensemble	
  	


ε	


ε	
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+	




Examples of Covariant Approximations 
(contd.)	


!  All Mode Averaging 
AMA 
 Sloppy CG  or 
 Polynomial  
   approximations 
 

0 0.5 1 1.5 2 2.5

1

10

100

1000

Figure 3: Polynomial approximation of 1/�, Npoly = 10, the mini-max approximation for
the relative error, for � � [0.052, 1.672].

8

accuracy	
  control	
  :	
  
•  	
  low	
  mode	
  part	
  :	
  #	
  of	
  eig-­‐mode	
  
•  	
  mid-­‐high	
  mode	
  :	
  	
  degree	
  of	
  poly.	
If	
  quark	
  mass	
  is	
  heavy,	
  e.g.	
  	
  ~	
  strange,	
  	
  

low	
  mode	
  isolaOon	
  may	
  be	
  unneccesary	




AMA at work    	


!  Target :  V=323 x 64 =(4.6fm)3x9.6fm, Ls=32  Shamir-
DWF, a-1=1.37 GeV, Mpi = 170 MeV 

!  Use Ls=16  Mobius as the approximation 
      [Brower, Neff, Orginos, arXiv:1206.5214] 

 
!  quark propagator cost on SandyBridge 1024 cores 

(XSEDE gordon@SDSC) 
•  non-deflated  CG, r(stop)=1e-8 : ~9,800  iteration, 5.7 hours / prop 
•  Implicitly restarting Lanczos of Chebyshev polynomials of even-odd prec 

operator for 1000 eigenvectors 
 [Neff et al. PRD64, 114509 (2001)] :  12 hours 

•  deflated CG with 1000 eigenvectors : ~700 iteration, 20 min /prop 
•  deflation+sloppy CG, r(stop)=5e-3 :  ~125 iteration,  3.2 min /prop 

!  Multiplicative Cost reduction for General hadrons 
could combine with {EigCG | AMG} and Distillation:  
 x1.2 (Mobius) x 14 (deflation) x 7 (sloppy CG)  ~  x 110  
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0 0.1 0.2 0.3 0.4
Q2 [GeV2]

0.4

0.6

0.8

1

F 1p-
n (Q

2 )

Calculations with      AMA,  160 days
Calculations without AMA,  430 days

AMA at work   
[ M. Lin ]  	


!  F1(Q2) :  tsep = 9 a ~ 1.3 fm 
  1 forward +  2 (up and down) seq-props,  
contraction cost is ~15% of sloppy 
propagator 
 

!  Error bar  
  x 2 – 2.7 ~ sqrt(4400/600) 

!  Total cost reduction upto 
 ( 430 / 160 ) * (4400/600) 
~ x19.7 
 

!  Note this is still sub-optimal, 4 exact 
source and without deflation. (would 
be x30 for 2 exact sources)	
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!  non-deflated CG,  150 config x 4 sources = 600 measurements :  
   5.7 * 3 * 4 * 150 config = 10K hours, 430 days 

        
!  AMA :  39 config, 4 exact solves / config (perhaps overkill) , NG=112 sloppy solves  

  => 39 x 112 = 4400 AMA measurements :  
      ( 5.7 * 3 * 4 + 12 + 0.06 * 3  * 112) * 39 config = 3.9 K hours, 160 days 
        4-exact (68%) + Lanczos (12%) + sloppy CG (20%) 
 
 

t t’

!



Improving HVP statistics using AMA	


!  Staggered Fermion (MILC Asqtad, Mpi=300 MeV) 
2.6 --  20  times smaller error with same cost 
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0.1
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0.2

-Π
(Q
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Now	
  ge,ng	
  	
  to	
  
	
  	
  	
  	
  all	
  stat	
  error	
  	
  <	
  2%	
  
	
  
qmin^2	
  	
  =	
  	
  1.5	
  m(mu)	




RBC/UKQCD  DWF  AMA Results	


!  Two lattice spacings  
a = 0.11, 0.088fm,  
Mpi=0.28-0.33 GeV 
All stat err  < 0.7% 
q_min = 2 m(mu) 

!  Applied [2,1] Pade, 
 can’t fit with 
    b1 >= 4 Mpi^2 bound	


Lattice	
 mu	
 ΠV(0)	
 a0 (GeV-2)	
 a1	
 b1 (GeV2)	
 χ2/dof	
 4mπ
2 GeV2	


243×64	
 0.005	
0.1752(2)	
 0.0325(2)	
0.0407(1)	
 0.139(1)	
 2.7(4)	
 0.44	


0.01	
  0.1603(2)	
 0.0219(3)	
0.0434(4)	
 0.408(7)	
 0.4(1)	
 0.71	


323×64	
 0.004	
 0.197(2)	
 0.026(3)	
 0.052(3)	
 0.227(37)	
 0.08(7)	
 0.31	


0.006	
 0.190(3)	
 0.027(7)	
 0.043(11)	
 0.253(25)	
 0.4(5)	
 0.44	




Subtraction Strategy: 
Derivative of Twisting Angle 

[Divitiis et al.  PLB 718(2012) 589]	


!  pi =( 2π n  + θi)/ L 

594 G.M. de Divitiis et al. / Physics Letters B 718 (2012) 589–596

In the previous expressions one of the quark lines has been drawn
with a different color (green in the web version) in order to rep-
resent a quark of different mass with respect to the others (in
particular in the numerical analysis we have set kgreen = 0.13620
to be compared with ksea = 0.13590). By relying on the hermiticity
of the vector current we also get

∂

∂ pk
Ck

F I (t, 0⃗, p⃗)

∣∣∣∣
p⃗=0

= i

= [ f+ + f−]
(
q2

M
) G I G F

4MI M F
e−MI (T /2−t)−M F t,

∂

∂ pk
Ck

F I (t, p⃗, 0⃗)
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By using these relations, together with the corresponding ones in
the case of coinciding initial and final external states we get

NII(t) =
√

− = G2
I

4M2
I

e−MI T /2,

NFF(t) =
√

− = G2
F

4M2
F

e−M F T /2,

R+(t) =

√√√√√−
NII(t)NFF(t)

= [ f+ + f−]
(
q2

M
)
,
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The effective form factors are then obtained from

f+
(
q2

M
)
= R+(t) + R−(t)

2
,

f−
(
q2

M
)
= R+(t) − R−(t)

2
. (43)

The combinations of correlators given in the previous relations
is particularly effective in minimizing statistical fluctuations that
cancel between the different factors. In particular, when the ini-
tial and final meson masses are equal, the normalization condi-
tions f+(0) = 1 and f−(0) = 0 are identically verified for each
gauge configuration of the given ensemble. To give an idea of the
plateaux that can be obtained by using this method we show in
Fig. 3 the effective form factors extracted from our data.

5.3. The vacuum polarization tensor

In this section we show how the momentum expansion can
profitably be used in order to calculate the hadronic vacuum polar-
ization tensor, a quantity which is needed in order to predict the
leading hadronic contribution to the anomalous magnetic moment
of the muon.

The hadronic vacuum polarization tensor is calculated on the
lattice by considering the integrated two-point correlator of the
electromagnetic currents of the quarks

Cµν(p) = 1
(T L3)2

∑

x,y

eip(y−x+ν̂/2−µ̂/2)
〈
V µ

em(x)V ν
em(y)

〉

=
(
δµν p̂2 − p̂µ p̂ν)

Π
(

p2), (44)

Fig. 3. In the top panel we plot the effective form factor f+(q2
M ) while in the bottom

panel we show the effective form factor f−(q2
M ) for which we get a good plateaux

in the middle of the lattice where the large time separation condition is satisfied.
Data correspond to the D2 gauge ensemble.

where p̂µ = 2 sin(pµ/2). Given our choice of lattice Dirac operator,
we have used the point-split vector currents in order to define the
electromagnetic currents of the quarks,

V µ
em(x) →

[
ψ̄Γ

µ
V ψ

]
(x, 0⃗). (45)

We have chosen the momentum routing in which the external mo-
mentum p flows through one of the two quark propagators. With
this choice the point-split vector currents at the vertices connect
two fermion lines with different momentum and, consequently,
bring the dependence upon p⃗/2.

The leading hadronic contribution to the g − 2 of the muon is
obtained by extracting the scalar form factor Π(p2) from Eq. (44)
and by considering the difference Π(p2) − Π(0). The subtracted
form factor is introduced in order to cancel divergent contribu-
tions (see for example Refs. [14–18] for dedicated works) and, for
this reason, it is very important to have an accurate determination
of Π(0). By using standard techniques, Π(0) can only be obtained
by extrapolating the data obtained at p2 > 0. These extrapolations
unavoidably introduce systematic errors (for a recent discussion of
this point see [10]). In the following we shall show how Π(0) can
be computed on the lattice directly and without the need of any
extrapolation.

As for the other quantities computed in this Letter, the results
for Π(p2) have been obtained with limited statistics, on a single
volume, at fixed quark masses, etc. in order to demonstrate the
effectiveness of the proposed procedure. For this reason we shall
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not use our results to make a prediction for the muon g − 2. This
will be the subject of future work.

After fermion integration and Wick contractions, the correla-
tor Cµν(p) has both fermion-connected and fermion-disconnected
contributions. If, for example, we limit ourself to the N f = 2 case
in the isospin symmetric theory we have

Cµν(p) = (eu + ed)
2 −

(
e2

u + e2
d

)
, (46)

where eu = 2/3 and ed = −1/3. In the following we shall con-
centrate on the connected part. Actually, many of the lattice col-
laborations involved in the computation of the hadronic vacuum
polarization tensor [14–18] have neglected (or just attempted an
estimate of) disconnected contributions. The choice is due to the
big computational effort required for the calculation and not be-
cause these are expected (at least in general) to be negligible. Our
method has to be generalized for disconnected diagrams.

In the following we call Ĉµν the connected contribution cor-
responding to a single quark without multiplying it for the cor-
responding electric charge. In particular, we consider the corre-
lators with different spatial indices (µ = k, ν = h ≠ k) because
these are proportional to the spatial momenta and because they
do not require additional contributions in order to satisfy gauge
Ward identities. Indeed, the lattice photon self-energy with equal
indices includes also the tadpole graph, where two photons cou-
ple to the fermion line in a single vertex (the current coupled to
two photons is the one that we have previously indicated as “tad-
pole current”). We checked anyway, on limited statistics, that the
gauge Ward identities

∑
µ p̂µĈµν = ∑

ν p̂ν Ĉµν(p) = 0 are satis-
fied.

First, fixed µ = 1 and ν = 2, we have computed the integrated
correlation at p1 > 0 and p2 > 0 and divided it by the momenta,

Π
(

p2 > 0
)

= − Ĉ12(p)

p̂1 p̂2 = 1
(T L3)2

×
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x,y

〈
Tr

{
S[y, x; U ]Γ 1

V (x, p⃗/2)S
[
x, y; U ,λp]

Γ 2
V (y, p⃗/2)

}〉
.

(47)

Then we have applied the rules discussed in the previous sections
to define the second mixed derivative, acting on propagators and
vertices and evaluated at zero momentum, according to

Π(0) = −∂2Ĉ12(p)

∂ p1∂ p2

∣∣∣∣
p2=0

= 1
(T L3)2

×
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〈
Tr

[
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V
∂2 S
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Γ 2

V

]
− 1

4
Tr
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T SΓ 2
T
]

− i
2

Tr
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SΓ 1
T

∂ S
∂ p2

Γ 2
V

]
− i

2
Tr

[
SΓ 1

V
∂ S
∂ p1

Γ 2
T

]〉
, (48)

where, for the sake of brevity, we have dropped position argu-
ments and we have used the relations

∂Γ k
V (x, p⃗/2)

∂ pk
= − i

2
Γ k

T (x, p⃗/2),

∂Γ k
T (x, p⃗/2)

∂ pk
= − i

2
Γ k

V (x, p⃗/2), (49)

to obtain the derivative of the vertices (see Section 4 above). Note
that in the previous expressions the factor 1/2 appears because
the currents here depend upon p⃗/2 and not upon p⃗.

Fig. 4. The black points correspond to the calculation of Π(p2) performed by using
standard techniques (according to Eq. (47)) on two lattice volumes, 243 × 48 for
the D2 ensemble and 323 × 64 for the E2 ensemble. The red points correspond to
Π(0) calculated directly on the lattice (according to Eq. (48)) for the two volumes.
Data are in lattice units. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this Letter.)

To the lattice definition of Π(0), Eq. (48), it can be given the
following graphical representation (see also Eq. (18))

Π(0) = −∂2Ĉ12(p)

∂ p1∂ p2

∣∣∣∣
p2=0

= −

− 1
2

− 1
2

− 1
4

. (50)

In Fig. 4 we show our results. The black points correspond
to Π(p2) obtained from Eq. (47) and, as expected, tend to be
noisy for small values of p2. The red points correspond to Π(0)
calculated directly on the lattice according to Eq. (48). The data,
obtained with limited statistics (150 gauge configurations for the
D2 ensemble and 138 gauge configurations for the E2 ensemble),
correspond to two different lattice volumes (V D2 = 243 × 48 and
V E2 = 323 × 64) and differ at small momenta for finite volume ef-
fects.

For each data set, the error on Π(0) is comparable to the error
that can be obtained at (ap)2 ∼ 0.05 but, coming from a direct
calculation, it does not need to be corrected for systematic errors
due to extrapolations and, is important to note, it scales with the
statistics. Furthermore, the error on Π(0) scales favorably with the
lattice volume.

6. Conclusions

The method discussed in this Letter allows the direct calcula-
tion on the lattice of the derivatives of correlators with respect to
external momenta. We have described the method and checked its
validity for several correlation functions.

In particular, we have derived expressions to be used in order
to compute both form factors parametrizing semileptonic decays
of pseudoscalar mesons into other pseudoscalar mesons, directly at
zero recoil. These relations, checked numerically in this Letter, may
have many important phenomenological applications, for example
in the calculation of B → Dℓν differential decay rate without ex-
cluding the ℓ = τ case, etc. Similar relations can be easily derived
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these are proportional to the spatial momenta and because they
do not require additional contributions in order to satisfy gauge
Ward identities. Indeed, the lattice photon self-energy with equal
indices includes also the tadpole graph, where two photons cou-
ple to the fermion line in a single vertex (the current coupled to
two photons is the one that we have previously indicated as “tad-
pole current”). We checked anyway, on limited statistics, that the
gauge Ward identities

∑
µ p̂µĈµν = ∑
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∂ p1∂ p2

∣∣∣∣
p2=0

= 1
(T L3)2

×
∑

x,y

〈
Tr

[
SΓ 1

V
∂2 S

∂ p1∂ p2
Γ 2

V

]
− 1

4
Tr

[
SΓ 1

T SΓ 2
T
]

− i
2

Tr
[

SΓ 1
T

∂ S
∂ p2

Γ 2
V

]
− i

2
Tr

[
SΓ 1

V
∂ S
∂ p1

Γ 2
T

]〉
, (48)

where, for the sake of brevity, we have dropped position argu-
ments and we have used the relations

∂Γ k
V (x, p⃗/2)

∂ pk
= − i

2
Γ k

T (x, p⃗/2),

∂Γ k
T (x, p⃗/2)

∂ pk
= − i

2
Γ k

V (x, p⃗/2), (49)

to obtain the derivative of the vertices (see Section 4 above). Note
that in the previous expressions the factor 1/2 appears because
the currents here depend upon p⃗/2 and not upon p⃗.

Fig. 4. The black points correspond to the calculation of Π(p2) performed by using
standard techniques (according to Eq. (47)) on two lattice volumes, 243 × 48 for
the D2 ensemble and 323 × 64 for the E2 ensemble. The red points correspond to
Π(0) calculated directly on the lattice (according to Eq. (48)) for the two volumes.
Data are in lattice units. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this Letter.)

To the lattice definition of Π(0), Eq. (48), it can be given the
following graphical representation (see also Eq. (18))

Π(0) = −∂2Ĉ12(p)
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In Fig. 4 we show our results. The black points correspond
to Π(p2) obtained from Eq. (47) and, as expected, tend to be
noisy for small values of p2. The red points correspond to Π(0)
calculated directly on the lattice according to Eq. (48). The data,
obtained with limited statistics (150 gauge configurations for the
D2 ensemble and 138 gauge configurations for the E2 ensemble),
correspond to two different lattice volumes (V D2 = 243 × 48 and
V E2 = 323 × 64) and differ at small momenta for finite volume ef-
fects.

For each data set, the error on Π(0) is comparable to the error
that can be obtained at (ap)2 ∼ 0.05 but, coming from a direct
calculation, it does not need to be corrected for systematic errors
due to extrapolations and, is important to note, it scales with the
statistics. Furthermore, the error on Π(0) scales favorably with the
lattice volume.

6. Conclusions

The method discussed in this Letter allows the direct calcula-
tion on the lattice of the derivatives of correlators with respect to
external momenta. We have described the method and checked its
validity for several correlation functions.

In particular, we have derived expressions to be used in order
to compute both form factors parametrizing semileptonic decays
of pseudoscalar mesons into other pseudoscalar mesons, directly at
zero recoil. These relations, checked numerically in this Letter, may
have many important phenomenological applications, for example
in the calculation of B → Dℓν differential decay rate without ex-
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TABLE I: The lattice QCD gluon field configurations used here come from the MILC collaboration [22, 23]. � = 10/g2 is
the QCD gauge coupling, and w0/a [24] gives the lattice spacing, a, in terms of the Wilson flow parameter, w0 [25]. We take
w0=0.1715(9) fm fixed from f⇡ [24]. L and T give the length in the space and time directions for each lattice. am

sea
` , am

sea
s

and am

sea
c are the light (m` ⌘ mu = md), strange, and charm sea quark masses in lattice units and am

val
s , the valence

strange quark mass, tuned from the mass of the ⌘s, aM⌘s . ZV,ss gives the vector current renormalization factor obtained
nonperturbatively [26]. The lattice spacings are approximately 0.15 fm for sets 1–2, 0.12 fm for sets 3–8, and 0.09 fm for sets 9–
10. Light sea-quark masses range from ms/5 to the physical value and lattice volumes ranging from 2.5 fm to 5.8 fm. The
number of configurations is given in the final column. We used 16 time sources on each (12 on sets 1 and 2).

Set � w0/a am

sea
` am

sea
s am

sea
c am

val
s aM⌘s ZV,ss L/a⇥ T/a ncfg

1 5.80 1.1119(10) 0.01300 0.0650 0.838 0.0705 0.54024(15) 0.9887(20) 16⇥48 1020
2 5.80 1.13670(50) 0.00235 0.0647 0.831 0.0678 0.526799(81) 0.9887(20) 32⇥48 1000
3 6.00 1.3826(11) 0.01020 0.0509 0.635 0.0541 0.43138(12) 0.9938(17) 24⇥64 526
4 6.00 1.4029(9) 0.00507 0.0507 0.628 0.0533 0.42664(9) 0.9938(17) 24⇥64 1019
5 6.00 1.4029(9) 0.00507 0.0507 0.628 0.0533 0.42637(6) 0.9938(17) 32⇥64 988
6 6.00 1.4029(9) 0.00507 0.0507 0.628 0.0507 0.41572(14) 0.9938(17) 32⇥64 300
7 6.00 1.4029(9) 0.00507 0.0507 0.628 0.0533 0.42617(9) 0.9938(17) 40⇥64 313
8 6.00 1.4149(6) 0.00184 0.0507 0.628 0.0527 0.423099(34) 0.9938(17) 48⇥64 1000
9 6.30 1.8869(39) 0.00740 0.0370 0.440 0.0376 0.31384(9) 0.9944(10) 32⇥96 504
10 6.30 1.9525(20) 0.00120 0.0363 0.432 0.0360 0.30480(4) 0.9944(10) 64⇥96 621

in units of e. Here
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2 � q

2

2m2
µ

q

2
. (3)

Note that in our calculation we have ignored quark-line-
disconnected contributions to the HVP. These are sup-
pressed by quark mass factors since they would vanish
for equal mass u, d and s quarks since

P
u,d,s

Qf = 0 [6].
The quark polarization tensor is the Fourier transform

of the vector current-current correlator. For spatial cur-
rents at zero spatial momentum

⇧ii(q2) = q

2⇧(q2) = a

4
X

t

e

iqt

X

~x

hji(~x, t)ji(0)i (4)

with q the Euclidean energy. We need the renormalized
vacuum polarization function, ⇧̂(q2) ⌘ ⇧(q2) � ⇧(0).
Time-moments of the correlator give the derivatives at
q

2 = 0 of ⇧̂ (see, for example, [32, 33]):

G2n ⌘ a

4
X

t

X

~x

t

2n
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2
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hji(~x, t)ji(0)i

= (�1)n
@

2n
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2n
q

2⇧̂(q2)

����
q

2=0

. (5)

Here we have allowed for a renormalization factor Z
V

for
the lattice vector current. Note that time-moments re-
move any contact terms between the two currents. G2n is
easily calculated from the correlators calculated in lattice
QCD, remembering that time runs from 0 at the origin
in both positive and negative directions to a maximum
value of T/2 in the centre of the lattice.

FIG. 2: Fractional error in the muon anomaly aµ caused by
replacing the quark vacuum polarization from one-loop per-
turbation theory with its [n, n] and [n, n � 1] Padé approxi-
mants. The exact result is always between the [n, n� 1] and
[n, n] approximants. The quark mass is set equal to the kaon
mass in this test case.

Defining

⇧̂(q2) =
1X

j=1

q

2j⇧
j

(6)

then

⇧
j

= (�1)j+1 G2j+2

(2j + 2)!
. (7)

To evaluate the contribution to a

µ

we will replace ⇧̂(q2)
with its [n, n] and [n, n � 1] Padé approximants derived
from the ⇧

j

[17]. We perform the q2 integral numerically.
The power of the Padé approximants is illustrated in

Fig. 2 which shows the precision of di↵erent approxi-
mants compared with the exact result for a simple test
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Fig. 2 which shows the precision of di↵erent approxi-
mants compared with the exact result for a simple test
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Note that in our calculation we have ignored quark-line-
disconnected contributions to the HVP. These are sup-
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Here we have allowed for a renormalization factor Z
V

for
the lattice vector current. Note that time-moments re-
move any contact terms between the two currents. G2n is
easily calculated from the correlators calculated in lattice
QCD, remembering that time runs from 0 at the origin
in both positive and negative directions to a maximum
value of T/2 in the centre of the lattice.

FIG. 2: Fractional error in the muon anomaly aµ caused by
replacing the quark vacuum polarization from one-loop per-
turbation theory with its [n, n] and [n, n � 1] Padé approxi-
mants. The exact result is always between the [n, n� 1] and
[n, n] approximants. The quark mass is set equal to the kaon
mass in this test case.
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FIG. 4: Lattice QCD results for the connected contribution to
the muon anomaly aµ from vacuum polarization of s quarks.
Results are for three lattice spacings, and two light-quark
masses: m

lat
` = ms/5 (lower, blue points), and m

lat
` = m

phys
`

(upper, red points). The dashed lines are the corresponding
values from the fit function, with the best-fit parameter val-
ues: ca2 = 0.29(13), csea = �0.020(6) and cval = �0.61(4).
The gray band shows our final result, 53.41(59)⇥10�10, with
m

lat
` = m

phys
` , after extrapolation to a = 0.

TABLE III: Error budgets for connected contributions to the
muon anomaly aµ from vacuum polarization of s and c quarks.

a

s
µ a

c
µ

Uncertainty in lattice spacing (w0, r1): 1.0% 0.6%
Uncertainty in ZV : 0.4% 2.5%

Monte Carlo statistics: 0.1% 0.1%
a

2 ! 0 extrapolation: 0.1% 0.4%
QED corrections: 0.1% 0.3%

Quark mass tuning: 0.0% 0.4%
Finite lattice volume: < 0.1% 0.0%
Padé approximants: < 0.1% 0.0%

Total: 1.1% 2.7%

mistuning of the sea and valence light-quark bare masses:
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For our lattices with physical u/d sea masses �xsea is very
small. a

2 errors from staggered ‘taste-changing’ e↵ects
will remain and they are handled by c

a

2 . The four fit
parameters are a2

µ

, c
a

2 , csea and cval; we use the following
(broad) Gaussian priors for each:

a

s

µ

= 0 ± 100 ⇥ 10�10

c

a

2 = 0(1) csea = 0(1) cval = 0(1). (11)

Our final result for the connected contribution for

TABLE IV: Contributions to aµ from s and c quark vacuum
polarization. Only connected parts of the vacuum polariza-
tion are included. Results, multiplied by 1010, are shown for
each of the Padé approximants.

Quark [1, 0]⇥ 1010 [1, 1]⇥ 1010 [2, 1]⇥ 1010 [2, 2]⇥ 1010

s 57.63(67) 53.28(58) 53.46(59) 53.41(59)
c 14.58(39) 14.41(39) 14.42(39) 14.42(39)

s quarks to g � 2 is:

a

s

µ

= 53.41(59) ⇥ 10�10
. (12)

The fit to [2, 2] Padé results from all 10 of our configu-
ration sets is excellent, with a �

2 per degree of freedom
of 0.22 (p-value of 0.99). In Fig. 4 we compare our fit
with the data from configurations with m

s

/m

`

equal 5
and with the physical mass ratio.
The error budget for our result is given in Table III.

The dominant error, by far, comes from the uncertainty
in the physical value of the Wilson flow parameter w0,
which we use to set the lattice spacings. We estimate the
uncertainty from QED corrections to the vacuum polar-
ization to be of order 0.1% from perturbation theory [20],
suppressed by the small charge of the s quark. Our re-
sults show negligible dependence (< 0.1%) on the spatial
size of the lattice, which we varied by a factor of two. Also
the convergence of successive orders of Padé approximant
indicates convergence to better than 0.1%; results from
fits to di↵erent approximants are tabulated in Table IV.
Note that the a2 errors are quite small in our analysis.

This is because we use the highly corrected HISQ dis-
cretization of the quark action. Our final (a = 0) result
is only 0.6% below our results from the 0.09 fm lattices
(sets 9 and 10). The variation from our coarsest lattice to
a = 0 is only 1.8%. We compared this with results from
the clover discretization for quarks, which had finite-a
errors in excess of 20% on the coarsest lattices.
Finally we also include results for c quarks in Tables III

and IV. These are calculated from the moments (and er-
ror budget) published in [20]. Our final result for the con-
nected contribution to the muon anomaly from c-quark
vacuum polarization is:

a

c

µ

= 14.42(39) ⇥ 10�10
. (13)

The dominant source of error here is in the determination
of the Z

V

renormalization factors. This error could be
substantially reduced by using the method we used for
the s-quark contribution [26].

III. DISCUSSION/CONCLUSIONS

The ultimate aim of lattice QCD calculations of
a

µ,HVP is to improve on results from using, for exam-
ple, �(e+e� ! hadrons) that are able to achieve an un-
certainty of below 1%. We are not at that stage yet.
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HVP Summary and future prospects	


!  Lattice HVP issues 
 
•  Parameterize / Fit   low Q2  
    →  Model Independent Pade,  Time-moments of HVP 
         ( error from parameterization dependence ) 
•  More precise data at low Q2 

→  Twisted B.C. , Derivatives of twist angle, 
      Time-like momentum, or simply large volume  

•  Discretization error,  Quark Mass dependence 
   → Nf=2+1, 2+1+1, Physical quark mass calculations are  running  
•  Statistical error  

→ All Mode Averaging (AMA)  helps to reduction of statistical 
error. 
 

•  Disconnected quark loop 
•  EM Isospin / wall  

28	



