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Outline

 Status of the beta release
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 Off-site installs and builds

 The schedule

 LBNE code organization

(In backup:  notes on how to get started)
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Status of beta release

 It's out!

– larsoft v0_02_01 -q <debug:e4 | e4:prof> (choose one)

– Based on a snapshot of svn taken on Nov. 26

– Documentation on the “LArSoft (beta)” site in Redmine

● https://cdcvs.fnal.gov/redmine/projects/larsoft

– Quick-start guide to using and developing under the new system

● https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/_Quick-start_guide_to_using_and_developing_LArSoft_code

– The new development model

● https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/_The_developer_environment_

● Explanation of the branching model and development workflow

– Where to find which packages

● Overview of package organization

● Re-factoring lists

https://cdcvs.fnal.gov/redmine/projects/larsoft
https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/_Quick-start_guide_to_using_and_developing_LArSoft_code
https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/_LArSoft_repositories_packages_and_dependencies_
https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/_Experiment-specific_code_and_re-factoring_
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Status of beta release

 What remains to be done

– Beta testing (next topic)

– Remote installation and builds

● On-going work testing binary installation and source build procedures

– Additional re-factoring work

● fcl files

– Some experiment-specific fcl files still in core LArSoft:  eg, geometry.fcl

– Better organization needed overall

● Experiment-specific modules/services for which there is no generic analog

– eg, SignalShapingService

None of these are critical, so are low priority prior to production transition

– Nightly build infrastructure

– Acceptance criteria / experiment sign-off
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Beta testing

 Objectives

– Technical:

● To ensure that all programs that need to run do actually run

● To validate the results obtained 

● To demonstrate that the software can be installed, built and run off-site 

– Usability:

● To determine that the tools work as specified

● To determine whether the tools provide the features needed to work effectively

– Documentation:

● To determine that the documentation is clear, correct, and complete

 Testing is the responsibility of LBNE

– The LArSoft project will address problems, create new releases as needed
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Beta testing

 Beta test procedure 
see: https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/_Special_instructions_for_beta_testers_

– Follow the steps in the quick-start guide

– Run any job that you need to do your work

– Check the results are correct

– Report what you did and whether the test was successful

– Use the issue tracker to:

● Report all technical problems, test failures

● Report missing functionality

● Suggest feature enhancements

● Suggest documentation improvements

https://cdcvs.fnal.gov/redmine/projects/larsoft/issues/new

 The work for LBNE is being organized by Tom and Maxim

https://cdcvs.fnal.gov/redmine/projects/larsoft/issues/new
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Acceptance criteria

 When is beta testing completed?

– Need to agree on criteria

 Minimum criteria

– A list of jobs that need to run

● Define a sub-set that we will call the “test suite”

● Will need the test suite again during the production transition

– Verification that all run as expected

● Validate the test suite against svn version

● Just created an S2013.11.25 release that can be used for beta validation

– Validation of the test suite run on an off-site binary install

– Validation of the test suite run on an off-site source install + build

– No “major” reported deficiencies in the tools, workflow

– No “major” reported deficiencies in the documentation
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Off-site installs and builds

 Three distribution methods

– Local binary install 
(Instructions: https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/_Download_instructions_)

● Tested at SLAC (Tracy Usher) 

– prodsingle_uboone.fcl worked out of the box.

– A minor fcl change needed to standard_reco_uboone.fcl

– Pandora was missing an xml file needed for initialization

● Nevis started testing (Bill Seligman)

– Reported an issue during installing under zsh. Work-around provided.

– Local source install + build 
(Instructions: https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/_Download_instructions_)

● Work starting at BNL (Brett Viren)

– Minor issues encountered so far

● Getting organized at U Alabama (Ion Stancu, Muhammad Elnimr)

– cvmfs

● Beta release is uploaded to cvmfs server supported by the OSG (oasis)
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The plan and schedule

 Schedule summary

– Beta testing:   now until Jan 20

● Identify test suite / acceptance criteria:    Dec 17 – Jan 2 

– Can we do this today, now, for the technical elements??

● Demonstrate off-site install / off-site build:  by Jan 20

– Need this to happen as early as possible (LBNE is the driver here)

● Sign-off by experiments:  by Jan 20

– Need this to happen as early as possible. The second weeks of Jan?

● Transition dry run:  TBD

– Need to get this down to as short a time as possible.

– Goal is two days. Not easy, so need to start practicing, preparing on Jan 2

– Develop nightly build infrastructure:  Jan 1 until Jan 17

– Production transition:  Jan 21 to Jan 22  (!!)

● Production release ready by Jan 23       (Avoids collaboration meeting)

Detailed work breakdown and schedule on LArSoft Project sharepoint site

https://sharepoint.fnal.gov/project/LArSoft/_layouts/xlviewer.aspx?id=/project/LArSoft/Shared%20Documents/LArSoft%20Schedule%2012-17-2013.xlsx&Source=https://sharepoint.fnal.gov/project/LArSoft/Shared%20Documents/Forms/AllItems.aspx&DefaultItemOpen=1&DefaultItemOpen=1
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The production transition

 LArSoft will be unavailable during this procedure

– Freeze svn, create a release (Eric, Herb, Brian)    Late on Jan 20

● No more commits to svn, ever!

– Perform svn-to-git migration                               Run overnight on Jan 20?

– Perform re-factoring                                             Jan 21 pm, Jan 22 am

● Mostly scripted. Changes to include paths, Geometry service are not.

● Need to identify, deal with other non-backwards compatible changes we've made

– Build release     Jan 22 am

– Initial testing    Jan 22 pm

● Should a remote install + build + test be included here? Is not in current plan...

– Run test suite on svn and git-based releases. Jan 22 pm

● Observe identical results.

– Release LArSoft v1_00_00:   downtime over!  Jan 22 (late, so maybe 
effectively Jan 23 am)

This schedule is my
guess, and is not
yet approved
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LBNE code organization

 Current structure

– All code removed from LArSoft in a single “lbnecode” repository

– Build with mrb etc.

 The question:

– What do we want moving into the production transition?

● Is the current structure adequate?

– Will LBNE have “releases”, frozen ups products, etc, like LArSoft?

● I would recommend “yes”

– Will analysis code go into lbnecode?

● Does everyone need a personal git repository?

 Do not need an answer today, but will soon

– Play with the beta release, and think about it in that context.

– Discuss after the holidays

 Stakeholders and LArSoft general meeting the 2nd week of Jan
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The end
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Notes on how to get started
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How to get started

 An important note:   

– Changes to git repositories are allowed

– Should limit those changes to things needed to make the release work for 
testing purposes. But...

WARNING!! WARNING!! WARNING!!

– Everything in git will be deleted prior to the production transition

– Please port any changes back into svn, or let us know about it



How to get started

 Structure of the working area

work_area/
srcs/         
       CMakeLists.txt
       prodA/       
       prodB/                     
  (aka, a repository, package, 
product)
      build/       

localProducts_.../
         setup
         prodA/v0_02_01/
                    v0_02_02/
         prodB/...

mrb build
  Code in srcs copied here, then built  
  in place. Build products initially here 

First source localProducts.../setup

mrb gitCheckout
   Checks code out into srcs

mrb install
  Create ups products from build      
  results, installs them here.

To run this code:
setup prodA …, etc.

“mrb newDev” creates empty structure + localProducts.../setup + CMakeLists.txt



How to get started

 Structure of a repository

prodA/
.git
CMakeLists.txt

ups/         
       product_deps

sub-packageA/
                       <sub-pkgA code>

sub-packageB/
                       <sub-pkgB code>

Will be the leading name 
in #include paths

Your code!!

“mrb newProduct” creates skeleton of product/repository area + top-level
CMakeLists.txt + product_deps templates

Defines the run-time
environment (via the
product “table” file)

Defines the build-time environment 
and actions during “install” phase



How to get started

 The quick-start summary 
(see https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/_Quick-
start_guide_to_using_and_developing_LArSoft_code_) 

. /grid/fermiapp/uboone/software/setup_uboone.sh

mkdir <work_dir>

cd <work_dir>

mrb newDev -v v0_02_01 -q debug:e4       (or e4:prof for optimized)

. localProducts...xxx/setup

cd srcs

mrb g <repository-name>

cd <repository name>

<work......>

cd ../../build

source mrb setEnv

mrb install

cd ..

setup <repository-name> vx_yy_zz -q debug:e4   (or whatever)



 The branching model
 (see http://nvie.com/posts/a-successful-git-
branching-model/)

– Vertical lines are branches

– Circles represent commits       
= a state of the repository

– Arrows are actions that change 
the state:  branching, 
commiting, merging

 Git flow 
(See 
https://cdcvs.fnal.gov/redmine/projects/cet-is-

public/wiki/Git_flow_quick_start) 

– A tool to assist with working 
within this branching / workflow 
model 



 Using git flow

git flow feature start <name>

<work...>

To share this feature:

git flow feature publish <name>

<more work>

To get work from others

git pull origin feature/<name>

To finish up:

git commit …

git flow feature finish

<merges everything into develop>

git push origin develop
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