
Status of LArSoft beta release

L. Garren
B. Rebel
R. Snider

Fermilab

LBNE Software and Computing Meeting
Dec 20, 2013

Dec 20, 2013 LBNE Software and Computing Meeting 2

Outline

 Status of the beta release

 Beta testing, acceptance criteria

 Off-site installs and builds

 The schedule

 LBNE code organization

(In backup: notes on how to get started)

Dec 20, 2013 LBNE Software and Computing Meeting 3

Status of beta release

 It's out!

– larsoft v0_02_01 -q <debug:e4 | e4:prof> (choose one)

– Based on a snapshot of svn taken on Nov. 26

– Documentation on the “LArSoft (beta)” site in Redmine

● https://cdcvs.fnal.gov/redmine/projects/larsoft

– Quick-start guide to using and developing under the new system

● https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/_Quick-start_guide_to_using_and_developing_LArSoft_code

– The new development model

● https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/_The_developer_environment_

● Explanation of the branching model and development workflow

– Where to find which packages

● Overview of package organization

● Re-factoring lists

https://cdcvs.fnal.gov/redmine/projects/larsoft
https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/_Quick-start_guide_to_using_and_developing_LArSoft_code
https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/_LArSoft_repositories_packages_and_dependencies_
https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/_Experiment-specific_code_and_re-factoring_

Dec 20, 2013 LBNE Software and Computing Meeting 4

Status of beta release

 What remains to be done

– Beta testing (next topic)

– Remote installation and builds

● On-going work testing binary installation and source build procedures

– Additional re-factoring work

● fcl files

– Some experiment-specific fcl files still in core LArSoft: eg, geometry.fcl

– Better organization needed overall

● Experiment-specific modules/services for which there is no generic analog

– eg, SignalShapingService

None of these are critical, so are low priority prior to production transition

– Nightly build infrastructure

– Acceptance criteria / experiment sign-off

Dec 20, 2013 LBNE Software and Computing Meeting 5

Beta testing

 Objectives

– Technical:

● To ensure that all programs that need to run do actually run

● To validate the results obtained

● To demonstrate that the software can be installed, built and run off-site

– Usability:

● To determine that the tools work as specified

● To determine whether the tools provide the features needed to work effectively

– Documentation:

● To determine that the documentation is clear, correct, and complete

 Testing is the responsibility of LBNE

– The LArSoft project will address problems, create new releases as needed

Dec 20, 2013 LBNE Software and Computing Meeting 6

Beta testing

 Beta test procedure
see: https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/_Special_instructions_for_beta_testers_

– Follow the steps in the quick-start guide

– Run any job that you need to do your work

– Check the results are correct

– Report what you did and whether the test was successful

– Use the issue tracker to:

● Report all technical problems, test failures

● Report missing functionality

● Suggest feature enhancements

● Suggest documentation improvements

https://cdcvs.fnal.gov/redmine/projects/larsoft/issues/new

 The work for LBNE is being organized by Tom and Maxim

https://cdcvs.fnal.gov/redmine/projects/larsoft/issues/new

7

Acceptance criteria

 When is beta testing completed?

– Need to agree on criteria

 Minimum criteria

– A list of jobs that need to run

● Define a sub-set that we will call the “test suite”

● Will need the test suite again during the production transition

– Verification that all run as expected

● Validate the test suite against svn version

● Just created an S2013.11.25 release that can be used for beta validation

– Validation of the test suite run on an off-site binary install

– Validation of the test suite run on an off-site source install + build

– No “major” reported deficiencies in the tools, workflow

– No “major” reported deficiencies in the documentation

8

Off-site installs and builds

 Three distribution methods

– Local binary install
(Instructions: https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/_Download_instructions_)

● Tested at SLAC (Tracy Usher)

– prodsingle_uboone.fcl worked out of the box.

– A minor fcl change needed to standard_reco_uboone.fcl

– Pandora was missing an xml file needed for initialization

● Nevis started testing (Bill Seligman)

– Reported an issue during installing under zsh. Work-around provided.

– Local source install + build
(Instructions: https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/_Download_instructions_)

● Work starting at BNL (Brett Viren)

– Minor issues encountered so far

● Getting organized at U Alabama (Ion Stancu, Muhammad Elnimr)

– cvmfs

● Beta release is uploaded to cvmfs server supported by the OSG (oasis)

9

The plan and schedule

 Schedule summary

– Beta testing: now until Jan 20

● Identify test suite / acceptance criteria: Dec 17 – Jan 2

– Can we do this today, now, for the technical elements??

● Demonstrate off-site install / off-site build: by Jan 20

– Need this to happen as early as possible (LBNE is the driver here)

● Sign-off by experiments: by Jan 20

– Need this to happen as early as possible. The second weeks of Jan?

● Transition dry run: TBD

– Need to get this down to as short a time as possible.

– Goal is two days. Not easy, so need to start practicing, preparing on Jan 2

– Develop nightly build infrastructure: Jan 1 until Jan 17

– Production transition: Jan 21 to Jan 22 (!!)

● Production release ready by Jan 23 (Avoids collaboration meeting)

Detailed work breakdown and schedule on LArSoft Project sharepoint site

https://sharepoint.fnal.gov/project/LArSoft/_layouts/xlviewer.aspx?id=/project/LArSoft/Shared%20Documents/LArSoft%20Schedule%2012-17-2013.xlsx&Source=https://sharepoint.fnal.gov/project/LArSoft/Shared%20Documents/Forms/AllItems.aspx&DefaultItemOpen=1&DefaultItemOpen=1

10

The production transition

 LArSoft will be unavailable during this procedure

– Freeze svn, create a release (Eric, Herb, Brian) Late on Jan 20

● No more commits to svn, ever!

– Perform svn-to-git migration Run overnight on Jan 20?

– Perform re-factoring Jan 21 pm, Jan 22 am

● Mostly scripted. Changes to include paths, Geometry service are not.

● Need to identify, deal with other non-backwards compatible changes we've made

– Build release Jan 22 am

– Initial testing Jan 22 pm

● Should a remote install + build + test be included here? Is not in current plan...

– Run test suite on svn and git-based releases. Jan 22 pm

● Observe identical results.

– Release LArSoft v1_00_00: downtime over! Jan 22 (late, so maybe
effectively Jan 23 am)

This schedule is my
guess, and is not
yet approved

11

LBNE code organization

 Current structure

– All code removed from LArSoft in a single “lbnecode” repository

– Build with mrb etc.

 The question:

– What do we want moving into the production transition?

● Is the current structure adequate?

– Will LBNE have “releases”, frozen ups products, etc, like LArSoft?

● I would recommend “yes”

– Will analysis code go into lbnecode?

● Does everyone need a personal git repository?

 Do not need an answer today, but will soon

– Play with the beta release, and think about it in that context.

– Discuss after the holidays

 Stakeholders and LArSoft general meeting the 2nd week of Jan

Dec 20, 2013 LBNE Software and Computing Meeting 12

The end

Dec 20, 2013 LBNE Software and Computing Meeting 13

Notes on how to get started

Dec 20, 2013 LBNE Software and Computing Meeting 14

How to get started

 An important note:

– Changes to git repositories are allowed

– Should limit those changes to things needed to make the release work for
testing purposes. But...

WARNING!! WARNING!! WARNING!!

– Everything in git will be deleted prior to the production transition

– Please port any changes back into svn, or let us know about it

How to get started

 Structure of the working area

work_area/
srcs/
 CMakeLists.txt
 prodA/
 prodB/
 (aka, a repository, package,
product)
 build/

localProducts_.../
 setup
 prodA/v0_02_01/
 v0_02_02/
 prodB/...

mrb build
 Code in srcs copied here, then built
 in place. Build products initially here

First source localProducts.../setup

mrb gitCheckout
 Checks code out into srcs

mrb install
 Create ups products from build
 results, installs them here.

To run this code:
setup prodA …, etc.

“mrb newDev” creates empty structure + localProducts.../setup + CMakeLists.txt

How to get started

 Structure of a repository

prodA/
.git
CMakeLists.txt

ups/
 product_deps

sub-packageA/
 <sub-pkgA code>

sub-packageB/
 <sub-pkgB code>

Will be the leading name
in #include paths

Your code!!

“mrb newProduct” creates skeleton of product/repository area + top-level
CMakeLists.txt + product_deps templates

Defines the run-time
environment (via the
product “table” file)

Defines the build-time environment
and actions during “install” phase

How to get started

 The quick-start summary
(see https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/_Quick-
start_guide_to_using_and_developing_LArSoft_code_)

. /grid/fermiapp/uboone/software/setup_uboone.sh

mkdir <work_dir>

cd <work_dir>

mrb newDev -v v0_02_01 -q debug:e4 (or e4:prof for optimized)

. localProducts...xxx/setup

cd srcs

mrb g <repository-name>

cd <repository name>

<work......>

cd ../../build

source mrb setEnv

mrb install

cd ..

setup <repository-name> vx_yy_zz -q debug:e4 (or whatever)

 The branching model
 (see http://nvie.com/posts/a-successful-git-
branching-model/)

– Vertical lines are branches

– Circles represent commits
= a state of the repository

– Arrows are actions that change
the state: branching,
commiting, merging

 Git flow
(See
https://cdcvs.fnal.gov/redmine/projects/cet-is-

public/wiki/Git_flow_quick_start)

– A tool to assist with working
within this branching / workflow
model

 Using git flow

git flow feature start <name>

<work...>

To share this feature:

git flow feature publish <name>

<more work>

To get work from others

git pull origin feature/<name>

To finish up:

git commit …

git flow feature finish

<merges everything into develop>

git push origin develop

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

