
 High performance geometry
-- ideas for future direction
(or reasons to start from scratch)

--

meeting at Fermilab, 21.1.2013

Sandro Wenzel / CERN-PH-SFT

Sandro Wenzel

What is current status?

activity since spring 2013 focused on studying feasibility of vectorizing
(primitive) geometry kernels

demonstrated for a couple of shapes (box, tube, cone, tubeseg,
coneseg) that this is very possible indeed with good performance gains

this came at the cost of totally rewriting the routines to make them
vector friendly

programming model: Vc, Intel Cilk Plus (array notation)

performance example on CPU:
(simplified) navigation of particles in a logical volume with daughter shapes

CHEP13: max speedup of 3.1

current status: max speedup > 4 (with techniques discussed further
down)

Sandro Wenzel

goals / challenges ahead

We should now start a systematic effort to produce a “production
ready” library

Goals:
provide a library with vectorized interfaces for important geometry kernels

vectorization over particles, shapes

provide a library with CUDA/OpenCL kernels for important geometry
functions

(provide vectorized 1-particle functions)

achieve best performance

main challenges ahead (from my point of view):
current code does not serve for vectorization or SIMT -- there are just too
many branch levels (see for instance tube -> distanceToIn in Usolids)

hence, total code rewrite necessary (regardless of starting point:
ROOT or USOLIDS)

complete revalidation necessary

Sandro Wenzel

challenges continued ... / implications

targeting different backends (vector (Vc, CilkPlus), GPU, scalar)
sounds like a lot of code repetition if we continue to code the way it
was done in the past

will be a nightmare for maintenance and testing

We should hence (these points are related)
write code which is generic

kernels which work with scalar or vector arguments

reuse code as much as possible without performance loss

example: many kernels for tube / cone / polycone are shared and should be written
only once (without function calls)

write code which is composeable of smaller kernels

Sandro Wenzel

my general proposition

a templated library is a good ansatz to solve the challenges
presented:

you can write generic code easily with template functions

you automatically write easily inlinable / reusable code since templates
require coding in header files

a templated library is perfect to achieve good performance:
template class specialization allows to produce very optimized code for
particular shapes / matrices, etc.

example 1: tube example from slides before Christmas

example II: matrix transform specialization

average gain ~20% compared to non-specialized code with runtime branches

makes vectorization much more efficient

Sandro Wenzel

Sketch of generic code idea

common (static +
templated) kernels

CPU land GPU land
(CUDA)

Tube::DistanceToInScalar

Tube::DistanceToInVector

TubeCUDAkernel_DistanceToIn

(probably a .cu file
or an .h file)

(a .h file)(a .h file)

InZRange

InRadialRange

SolveQuadraticEquation

just one generic code base !

inlining scalar instantiation
of function

inlining Vc
instantiation of

function

inlining CUDA/scalar
instanteation of function

these are template functions
that template on argument type,
 return type, tube specialisation

etc.

Sandro Wenzel

Very first prototype

first prototype using these ideas exists

currently accessible for anyone one github (VecGeom)
https://github.com/sawenzel/VecGeom.git

asked for repository at CERN

shapes implemented: box, tube (all variants), cones (all variants),
polycone + some navigation methods

can repeat the benchmark from CHEP13

contains branch demonstrating generic generation of CUDA, Vc and
scalar functions out of same template functions

our technical student (Johannes) successfully ran first tests on CUDA and
CPU

should sit down in a working group to look at this code ...

https://github.com/sawenzel/VecGeom.git
https://github.com/sawenzel/VecGeom.git

Sandro Wenzel

My expectations for this week

hearing CUDA ideas and your requirements
do you need a kernel for every shape primitive or for just
for some

scope of kernels

virtual function problem

study of the prototype and decision of how to proceed

setup of a common workplan and milestones

coding conventions

setup of a plan to integrate this work (step by step)

setup of a plan to test this work

Sandro Wenzel

compatibility etc.

USolids was started as a unified solid library

ideally the vectorized work should become parts of USolids

however coding ansatz completely orthogonal to USolids at the
moment

VecGeom could become USolids2.0 / UGeom ???

We should definitely use the interfaces of USolids to start with

