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Motivation 
LCLS-II project is based on ILC/XFEL technology. Some  modifications are 
required for cw operations (gradient 16 MV/m;  beam: 300pC, 1MHz; 
σz=25µm in L3).  

 

– High-Q technology (N2 doping) for tesla: Q0 > 2.7e10@16MV/m; 
– HOM couplers should operate at 18 MV/m; maximum HOM power to 

HOM cable  2.5 W (A.Sukhanov, K.Bane talk) 
– Fundamental coupler modifications for higher Qext and high average 

power 
– HV and tuner modifications 

• Larger chimney 

– CM modification (150W heat load) 
 
 

* One of the constraints: first two cryomodules will use existing  at Fermilab 
ILC cavities (16+2 spares)  with short-short beam pipe configuration;   no 
modification of HOM coupler design (except feedthrough) is possible 

 
 



TESLA HOM coupler status 
• >100 TESLA HOM couplers operate many years in TTF and around of 

world with beams up to 9 mA in short pulse regime(designed for 1% DF)  
 In acceptance tests was found that no Q change with HOM feedthru, no 

MP, gradient is not limited up to > 35MV/m  if properly cleaned. 
 

• At longer pulses in cavities with attached HOM feedthroughs DESY 
observed often heating in the HOM couplers (no heating at the nominal 
short pulse conditions)- limitations for CW operation 
 

• New design of feedthrough (JLAB/DESY) was done to reduce heating 
 Pulse acceptance tests of TESLA cavities proved that HOM couplers, as 

designed, can operate at 24MV/m at least with DF ~ 10% , and 7.5MV/m in 
cw mode. The DF limit is not known yet.  

 

• Modification of HOM design allows to reduce HOM heating further  
• The modified HOM TESLA couplers have been tested cw at 33+ MV/m, 20 

MV/m and 21.5 MV/m for the JLab, DESY/JLab and DESY version respectively.  



High thermal conduction feedthrough 

• To reduce antennae heating HOM coupler will be equipped with high thermal 

conduction feedthroughs connected with copper braids directly to the 2-phase 

tube.  
 

• Three designs are available : JLAB; DESY; FNAL (modified for 3.9 GHz cavity 

with frequency range ~10 GHz) 
 

• General features: 
 Sapphire instead of Alumina (x10 higher thermal conductivity ) 

 Molybdenum instead of SS for the connector pin (x200 higher thermal conductivity) 

 Use Copper socket for better cooling 

XFEL-

design 
JLAB-

design 



Losses in antenna vs. Temperature 

Tant  

[K] 

Rs+Rbcs 

[nΩ]  

Pdiss @16MV/m 

[mW] 

7 4+3117  29.7 

6 4+1873  17.9 

5 4+1067 10.2 

4 4+500 4.8 

3 4+152 1.5 

2 4+8 0.13 

Courtesy of J.Sekutowicz 



Modifying HOM Antenna Shape to Reduce Heating 

ILC 

reshaping antenna design could handle 

up to 160 mT (~39 MV/m) compared to 

58 mT (14 MV/m) for the ILC antenna 
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Qext increases x10 



Effect of HOM feed-through for LCLS-II 

• ILC type feedtru limits cw gradient ~ 9.4 MV/m 
• Modification (change antenna shape) will increase 

limit up to ~38 MV/m, but QHOM will be ~10 times 
higher 
 

• XFEL (JLAB and FNAL) will be good ~40 MV/m. 
Need HTS test to prove at 24MV/m in cw mode 
 

• Further improvement is possible (pre-product. 
CM delay; Qext increase) 

/JLAB 

XFEL HOM feedthroughs with sapphire windows 

Cable thermal connection and load  

Antenna modification 

Feedthru modification 

FNAL simulations 



Further heating improvements  

JLAB/Kneisel 



Case 1  Case 2  Case 3 

Tip Temp [K] 2.395 2.455 5.97 

2K intercept [W] 0.007 0.008 0.116 

4K intercept [W] 0.538 0.538 0.786 

80K intercept [W] 0.577 0.577 0.740 

293K intercept [W] 1.124 1.124 1.002 

2K 4K 80K 293K 

2K 4K 80K 293K 
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0.2dB/m loss for cable PHOM = 5 W:  

 0.52W on outer+ 0.13W on inner  

Case1 

Case2 

Case3 

Effect of losses in cable (3m) connected to 4K(1m) and 80K (2m) 

Cables 
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Additional heating from RF losses: 

RF power to cable (estimation): 
• 0.3 W leak of fundamental mode 

• 2.5 W HOM mid-freq range 

• 0.3 W HOM high-freq. range 

 

Preliminary: need re-evaluate taking into account T-dependence!!! 

Need optimization of cable thermal connection points to reduce antenna heating  
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Cables 

LCLS-II FAC Review, July 1-2, 2014 



HTS-1 upgrade for LCLS-II program 
and Testing Plans 
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Horizontal test stands facilities in MDB 

HTS-1 STC HTS-2 

1.3GHz 
CW RF 

650 
CW RF 

325 MHz spoke 1.3 & 3.9 GHz 

Horizontal facilities serve: 

• Performance validation of dressed 

cavities at intermediate point 

between VTS and CM 

• R&D for cavity auxiliary components 

(couplers, HOM, tuners, etc.) 

• Microphonics and frequency control 

studies, algorithm verification 

1.3GHz & 650MHz 

60-80 W @ 2 K refrigeration available 

Pulsed RF 

klystrons 
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HTS -1 

Operational since 2007, ~2 cavities/month throughput  

• 1.3 GHz and 3.9 GHz cavities, ~1.5 ms RF pulses 

• 1.3 GHz tests with long (8-9 ms) RF pulses;  

- Adopt long-pulse test as part of standard cavity run plan 

- Switch between long and short pulse operations 

• Recently modified for CW operation 



HTS program for LCLS-II CM design verification 

Goals:  

• Validate critical technical decision needed for CM design complete.                                

• (high-Q0 cavity, FPC, HOM feed-through, HV, Tuner, magnetic shielding, etc…) 

• Provide test stand for cavity qualification before installation in CM. 

• First Article, 1.3 GHz Prototype CM :  complete Dec 2015. 

    (All cavities should be tested at VTS and ¼  in HTS before installation  2 cavities) 
 

Critical tests needed to prove technical decisions (CM design 

verification) 
 

• Performance of dressed high-Q cavity in cryomodule: Q > 2.7e10 @16 MV/m 

• Verify HOM coupler and feedthru designs @ 16 MV/m CW (18 MV/m adm. limit) 

• Main coupler design: QL=4.e7; RF cw power = 7 kW with full reflection  

• Test LCLSII-type Helium Vessel, magnetic shielding, end-lever Tuner (+piezo)  

• Resonance frequency control and microphonics studies (hardware, algorithm) 

• Tuner components reliability tests 



HTS upgrade for CW operation 

In support of the LCLS-II project, the Horizontal Test Stand (HTS) was recently 

upgraded to allow for low-power and high-power CW testing of dressed SRF cavities.   

Major Modifications: 

• New CW LLRF system with phase-locked loop control (like 325 MHz system) 

• Blanking off the cryostat input coupler port with a flange (RF & diagnostic) 

• RF cw power systems: 

Low-power: 200 W SSA as the RF source 

High-power: 30 kW CW IOT transmitter  (in progress) 

• Set of Helmholtz coils for 3D cancellation of the Earth’s magnetic field inside the cryostat.  

• Interlocks and Safety documentation 
 

This upgrade was commissioned in June 2014 with a cold test of cavity TB9RI026 

(not high-Q)- ILC-style dressed cavity with the following modifications: 

• The TTF3 coupler was replaced with a variable coupler (unity coupling) 

• ILC-style HOM feedthroughs were replaced with XFEL-style feedthroughs (DESY). 

• New thermal intercepts anchored to the cavity’s 2-phase pipe 

• RF cable from flange to coupler (200 W SSA) 



Low power variable coupler (unity coupling) 

• Used in VTS for high-Q0 program. 

• Spare built for HTS.  

• Fixed coupler also available (back up) 

 

 

 

Tuning Range of Qext 
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HTS with Three Axis Magnetic Cancellation  

Cryostat orientation:   N - S 

z 

y 

x 

Helmholtz coils  cancellation of magnetic field inside cryostat 

One ILC shield, measurement 
on cavity centerline  

All cancellation coils OFF 

All cancellation coils ON 



High-power RF: IOT Transmitter, 30 kW CW 

Waveguide Switch at HTS 

Wall to HTS-1 (~40 m) 

• Modify slow and fast interlock system to accommodate two 

RF power sources: pulsed (300 kW) and CW (30 kW). 

• Commissioning (Calibration of RF couplers, Checkout of all 

interlocks and ACNET parameters) 

IOT transmitter 

Cave Wall  

Connect existing IOT to current HTS-1 switch. 

- Run about 42 meters of WG-650 waveguide. 

- Install new calorimetric W/G load to switch  

Run signal cables between IOT and HTS control room. 



# Test, goal Start 
2014  

Cav. 
type 

Helium 
Vessel 

HOM 
antenna 

Coupler 
(cold) 

Coupler 
(warm) 

Magn 
shield 

Tuner RF 

1 
HTS  commissioning 
XFEL feedthru test 
μ-phonics study start 

June 
ILC 

RI26 
ILC XFEL variable None 

1-layer 
+coil 

None 
SSA 

200W 

2 
 High-Q0 cavity (AES011) 
verification 

July 
high-
Q#1 

ILC None variable None 1L+coil None 
SSA 

200W 

3 
FPC cold modified 
JLAB feedthru test 
μ-phonics study 

July 
Aug 

high-
Q#1 

ILC JLAB 
FPC 

modif 

FPC 
He 

cooled 
1L+coil blade 

IOT 
15kW 

4 
FPC#1 modified; 
μ-phonics study 

Aug 
high-
Q#1 

ILC JLAB 
FPC 

modif 
FPC#1 
modif 

1L+coil blade 
IOT 

15kW 

5 
High-Q cav. #2 
FPC#2 modified; HV 

Sept 
High-
Q#2 

LCLS-II  XFEL 
FPC 

modif 
FPC#2 
modif 

1L+coil None 
IOT 

15kW 

6 
High-Q#3 integrated test 
Tuner; magn.shield 

Oct 
High-
Q#3 

LCLS-II  JLAB 
FPC 

modif 
FPC#1 
modif 

2-layer 
Lever 

tuner1 
IOT 

15kW 

7 
high-Q#2 integrated test 
Tuner reliability 

Oct 
High-
Q#2 

LCLS-II  XFEL 
FPC 

modif 
FPC#2 
modif  

2-layer 
lever 

tuner2 
IOT 

15kW 

HTS tests schedule 

Test schedule is tentative  and based on assumed delivery of elements;  
Assumption: cavity test and next cavity preparation in parallel 
*High-Q0 cavities #2 and #3 will be qualified for installation to pre-production CM 



 
 
HTS commissioning and first results 
 
 

• System identification, tuning and commissioning 
• E vs. E and Temp, Effect of magnetic field 
• Cryogenic loading calibration (heater vs. RF loses)  
• Cool-down rate (slow 0.2K/min and fast 2K/min) 
• Resonance frequency control and microphinics 



The objectives of the 1st HTS test 

TB9RI026 cavity dressed in ILC type HV with blade-tuner, equipped with two XFEL 

HOM feedtroughs. Cavity was excited by tunable antenna able to provide critical 

coupling. The main goals of this test are: 
 

• Commission the CW upgrades (via the accomplishment of the subsequent objectives). 

• Validate the thermal performance of the XFEL HOM feedthroughs 

• Measure the cavity Q vs. E curve from the RF signals 

• Calibrate Q0 measurements by cryogenic loads (compare with direct Q measurement ) 

• Evaluate performance of active magnetic field compensation provide by Helmoltz coils 

• Develop a method of controlling cool-down rate, so that fast vs. slow cooldown effects 

can be studied. 

• Begin commissioning of piezo-based microphonics compensation system 



TB9RI026 in HTS 

Standard ILC dressed cavity, except: 
– High-Qext variable coupler 

– XFEL-style HOM feedthrough 
(sapphire window) 

 

Good thermal connections !!!  
– double strips soldered to clamp  
– Solid copper clamps,  
– glued T-sensors 

T-sensors Double strips 

clamp 



Q vs. E,  Gradient limit 

• Gradient was limited by 25W power 

dissipated in HV (chimney limit).  

– 13/17 MV/m @2K,coils=Off/On 

– 14/20 MV/m @1.8K,coils=Off/On 

– 22.6 MV/m @1.8K, 8π/9 mode 
 

• 2K, coils ON is comparable to VTS 

– 20% higher low-field Q at HTS, 

but not unreasonable to 

assume 10% systematic 

uncertainties 
 

• Compensation coils work really well. 

• Stronger mid-field Q-slope at HTS 

Coils 

ON 

LCLS-II 
specs 



HOM Temperature vs. E 

• 8pi/9 mode, 22.6 

MV/m  in end cells 

 

• 1.8K, B-field 

compensation=ON 

 

 

• ~1°on HOM body, 

~0.5° on feedthru 

- OK for LCLS-II 

Blue = Eacc, Red = T_HOM can, Green = T_HOM feedthru clamps, 

Yellow = T_HOM feedthrough.  Lines = HOM1, circles = HOM2 

HOM Can Temp 

HOM feedthru clamp Temp 



Gradient Limit 

First thing we did was rediscover the “chimney limit” 

• ILC HV chimney has A = 23 cm2; 1 W/cm2
 will choke heat transport  for heat loads > 25 W ( HZB) 

• …and in fact TB9RI026 quenched whenever Ploss approached 25 W  (+ 5W static load) 
• Could push cavity higher by using short pulses 

• 25 W limited us to 13 MV/m @2K,             
no B-field compensation. Running above 
limit is possible for ~45sec before quench 
developed,~20MV/m @2K see plot) 
 

• HOM temperatures barely budged, but 
need to go to at least 20 MV/m in order to 
OK the feedthrough design for LCLS-II 
 

• So, increase Q0 by running at 1.8 K instead 
of 2.0 and turning on B-field compensation 
(~20 MV/m), and increase field at HOMs 
by running in 8pi/9 mode (22.6MV/m) 
 



Summary of 1st cavity test 

Very successful cavity test 

• Commissioned CW upgrades 

• Validated XFEL-style HOM feedthroughs for LCLS-II ( >22.6 MV/m, cw) 

• Demonstrated reliable Q vs. E measurements from both RF and cryosystem 

• Developed techniques for controlling cooldown rates 

• First look on resonance control and microphonics to test hardware and 

software 

 

Next test is high-Q cavity (this week)  

then cavity with LCLS-II style main  

Coupler and JLAB feedthrus 



Conclusion 

• Thermal simulations prove that existing TESLA HOM coupler design and XFEL/JLAB 

can be accepted for LCLS-II for cw operation. 
 

• Two XFEL feedthroughs were assembled on ILC cavity and tested in HTS in CW 

mode. Temperature rise ~0.5K was measured at 22.6MV/m accelerating gradient. 

RF power from HOM ~0.5W was measured  outside of cryostat. (Prove) 
 

• HTS after upgrade for CW operation and commissioning is available for LCLS-II 

High-Q, FPC and CM design verification programs to prove baseline design 
 

• Expected results of HTS tests: 

o Qualify 3 high-Q cavities.  Two of them will be ready for CM installation 

o Prove HOM design and HOM feedthru (done for XFEL design, >22.6 MV/m) 

o Prove FPC design and test alternative cooling option 

o Prove Helium Vessel, Magnetic shield and  Lever Tuner designs 

o Study frequency control and microphonics 
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