## Large-scale Structure Systematics

#### Michael D. Schneider

#### March 26, 2014

LLNL-PRES-XXXXXX





< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National

Laboratory under Contract DE-AC52-07NA27344.

### THE NEW DISCOVERY SPACE FOR STAGE III/IV DARK ENERGY SURVEYS

Larger surveyed volume  $\Rightarrow$  new physics?

## THE NEW DISCOVERY SPACE FOR STAGE III/IV DARK ENERGY SURVEYS

#### Larger surveyed volume $\Rightarrow$ new physics?

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

- Clustering dark energy
- Early dark energy
- Primordial non-Gaussianity

# THE NEW DISCOVERY SPACE FOR STAGE III/IV DARK ENERGY SURVEYS

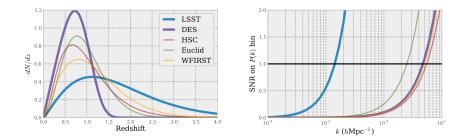
#### Larger surveyed volume $\Rightarrow$ new physics?

- Clustering dark energy
- Early dark energy
- Primordial non-Gaussianity

#### Distinguish dark energy from modified gravity?

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

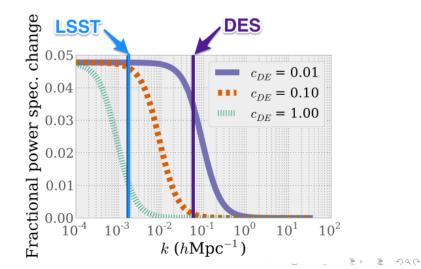
# THE NEW DISCOVERY SPACE FOR STAGE III/IV DARK ENERGY SURVEYS


#### Larger surveyed volume $\Rightarrow$ new physics?

- Clustering dark energy
- Early dark energy
- Primordial non-Gaussianity

#### Distinguish dark energy from modified gravity?

- Need more information than just BAOs.
- Confidence in BAO systematics implies confidence in broad-band power, photo-*z*'s, & gravitational growth via cross-correlations.

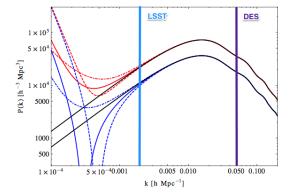

### THE NEW DISCOVERY SPACE FOR STAGE III/IV DARK ENERGY SURVEYS



|                       | DES   | LSST   | HSC   | Euclid | WFIRST |
|-----------------------|-------|--------|-------|--------|--------|
| Area (sq. deg.)       |       |        |       |        | 2,000  |
| $\min k (h Mpc^{-1})$ | 0.049 | 0.0017 | 0.060 | 0.028  | 0.049  |

## CLUSTERING DE INCREASES THE LARGE-SCALE MATTER POWER SPECTRUM

Transition scale set by DE Jeans length  $\leftrightarrow$  effective sound speed  $c_{DE}$ 




## PRIMORDIAL NON-GAUSSIANITY ALSO INCREASES LARGE-SCALE POWER OF BIASED MATTER TRACERS

From 'standard' inflation,  $f_{\rm NL}^{\rm loc.} \lesssim 1$ .

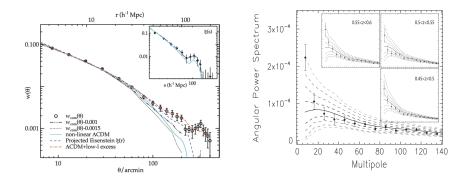
- line-of-sight
- transverse
- $f_{\rm NL}^{\rm loc.} = \pm 0.5$ (dot-dashed / dashed)

Baldauf et al. (2011)



Difficult measurement  $\rightarrow$  LSST may bound interesting range.

Given photo-*z* errors, the angular (cross-)correlation functions are a primary probe of LSS.

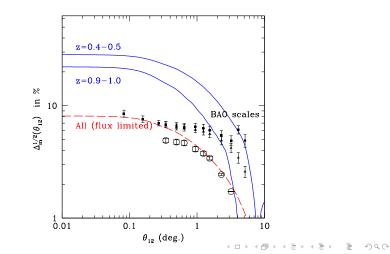

$$w(\theta) \equiv \left\langle \delta_{g}(\vec{\theta} + \vec{\theta}')\delta_{g}(\vec{\theta}') \right\rangle \approx \frac{DD(\theta, \theta + \Delta\theta)}{RR(\theta, \theta + \Delta\theta)}$$
(1)

< □ > < @ > < E > < E > E のQ@

#### **EXCESS CLUSTERING DETECTIONS**

Sawangwit et al. (2011)

#### Thomas et al. (2010)




LRG, SDSS DR5, photo-z

700k LRG, SDSS DR7, photo-z, 4 bins

## DES CALIBRATION OF LARGE-SCALE SYSTEMATIC CLUSTERING

Credit: DES-LSS WG, incl. Anne Bauer, Eli Rykoff, Eduardo Rozo, Nacho Sevilla, Aurelieb Benoit-Levy



## CLASSES OF SYSTEMATICS

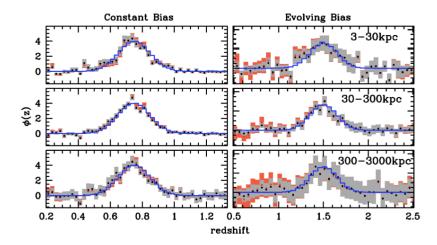
#### COURTESY OFER LAHAV

#### • Instrumental

- Photo-z
- Star / galaxy separation
- Sky background, seeing
- Dithering / footprint
- Image quality (photometry)
- Astrophysical
  - Galaxy biasing
  - Lensing magnification
  - Redshift-space distortions (RSD)
  - Galactic extinction
- Theoretical
  - Cosmological model & parameters
  - Covariances / nonlinear mode coupling
- Analysis methods (Percival: "misused statistics")
  - Look-elsewhere effect

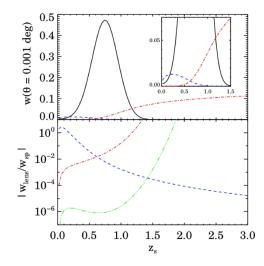
#### PHOTOMETRIC REDSHIFTS

Photo-z errors cause:


- Finite resolution along line-of sight
  - No radial BAOs
  - Redshift-space distortions systematic rather than signal
  - Limited modes for z-dependent dark energy
- Systematic errors in cosmology (when photo-*z* error distribution unknown)
  - Confusion of signals (clustering / lensing)
  - Limits on self-calibration through cross-correlations / joint probes

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• Skewed BAO peak (Zhan & Knox 2006, Simpson+2009)  $\rightarrow \sigma_z \lesssim 10^{-3}$ 


# PHOTO-*z* CALIBRATION FROM ANGULAR CROSS-CORRELATIONS

Schmidt et al. (2013), Menard et al. (2013)



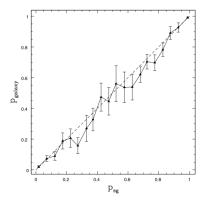
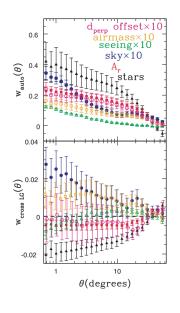
## LENSING MAGNIFICATION IS A CONTAMINANT FOR PHOTO-*z* CALIBRATIONS

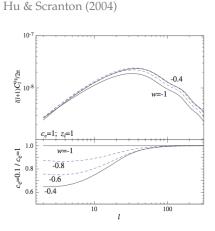
Matthews & Newman (DESC meeting Dec. 2013)

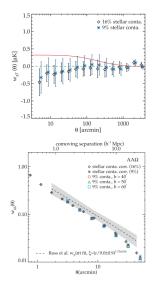


< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

#### Ross+2011



Figure 2. The fraction of objects that are galaxies versus the value of the star/galaxy parameter  $(p_{sg})$ . The dashed line displays the relationship  $p_{galaxy} = p_{sg}$ . Errors are Poissonian.




ロトメ母トメヨトメヨトニヨーのへで

#### CMB / GALAXY CROSS-CORRELATIONS

Sawangwit et al. (2009)





◆ロト ◆昼 ト ◆臣 ト ◆臣 ト 三臣 - のへ(で)

"... it is not only the accuracy of the  $z_{phot}$  that is important, but also the probability that an object is a galaxy."

– Ross et al. (2011) Ameiliorating systematic uncertainties in the angular clustering of galaxies: a study using the SDSS-III

"... it is not only the accuracy of the  $z_{phot}$  that is important, but also the probability that an object is a galaxy."

"...identifying robust methods of assigning probabilities that objects are galaxies should be a major focus of forthcoming photometric redshift surveys."

– Ross et al. (2011) Ameiliorating systematic uncertainties in the angular clustering of galaxies: a study using the SDSS-III

#### METHODS FOR SYSTEMATICS CORRECTION

#### Ross et al. (2011)

- Mask (e.g. extinction, regions around bright stars)
- Apply weights to galaxies What about correlated systematics?

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

**3** Calibrate with cross-correlations

#### METHODS FOR SYSTEMATICS CORRECTION

Ross et al. (2011)

- Mask (e.g. extinction, regions around bright stars)
- Apply weights to galaxies What about correlated systematics?

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

3 Calibrate with cross-correlations

#### CORRECTING FOR KNOWN SYSTEMATICS

Agarwal et al. (2013),

$$\delta_{g,\text{obs}}(\vec{\theta}) = \delta_{g,\text{true}}(\theta) + \sum_{i=1}^{N_{\text{sys}}} \epsilon_i(\theta) \delta_i(\vec{\theta}) + u(\vec{\theta})$$
(2)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- $\delta_i(\vec{\theta})$ : known systematic *i* angular overdensity
- $\epsilon_i(\theta)$ : amplitude of systematic *i*
- $u(\vec{\theta})$ : unknown systematics

#### CORRECTING FOR KNOWN SYSTEMATICS

Agarwal et al. (2013),

$$\delta_{g,\text{obs}}(\vec{\theta}) = \delta_{g,\text{true}}(\theta) + \sum_{i=1}^{N_{\text{sys}}} \epsilon_i(\theta) \delta_i(\vec{\theta})$$
(2)

- $\delta_i(\vec{\theta})$ : known systematic *i* angular overdensity
- $\epsilon_i(\theta)$ : amplitude of systematic *i*

Use all tomographic cross-correlations to solve for  $\epsilon_i(\theta)$ .

#### CORRECTING FOR KNOWN SYSTEMATICS

Agarwal et al. (2013),

$$\delta_{g,\text{obs}}(\vec{\theta}) = \delta_{g,\text{true}}(\theta) + \sum_{i=1}^{N_{\text{sys}}} \epsilon_i(\theta) \delta_i(\vec{\theta})$$
(2)

- $\delta_i(\vec{\theta})$ : known systematic *i* angular overdensity
- $\epsilon_i(\theta)$ : amplitude of systematic *i*

Use all tomographic cross-correlations to solve for  $\epsilon_i(\theta)$ . Problem: no information left to correct for *unknown* sytematics.

What's the best (i.e. least damaging) way to do this?

To confidently remove unknown systematics we have to *throw away data*. What's the best (i.e. least damaging) way to do this?

Insight from a different problem: astrophysical systematics in cross-correlations.

What's the best (i.e. least damaging) way to do this?

Insight from a different problem: astrophysical systematics in cross-correlations.

• The observed  $\delta_g$  is a sum of the intrinsic clustering of galaxies, distortions due to lensing magnification, and shot noise,

$$n(\mathbf{x}) = \bar{n} + \delta n_g(\mathbf{x}) + \delta n_\mu(\mathbf{x}) + \epsilon$$
(3)

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

What's the best (i.e. least damaging) way to do this?

Insight from a different problem: astrophysical systematics in cross-correlations.

• The observed  $\delta_g$  is a sum of the intrinsic clustering of galaxies, distortions due to lensing magnification, and shot noise,

$$n(\mathbf{x}) = \bar{n} + \delta n_g(\mathbf{x}) + \delta n_\mu(\mathbf{x}) + \epsilon$$
(3)

• The galaxy angular (cross-)correlation functions in tomographic bins have in principle the following contributions:

$$w(\theta) = w_{gg}(\theta) + w_{g\mu}(\theta) + w_{\mu g}(\theta) + w_{\mu \mu}(\theta) + w_{SN}$$
(4)

What's the best (i.e. least damaging) way to do this?

Insight from a different problem: astrophysical systematics in cross-correlations.

• The observed  $\delta_g$  is a sum of the intrinsic clustering of galaxies, distortions due to lensing magnification, and shot noise,

$$n(\mathbf{x}) = \bar{n} + \delta n_g(\mathbf{x}) + \delta n_\mu(\mathbf{x}) + \epsilon$$
(3)

• The galaxy angular (cross-)correlation functions in tomographic bins have in principle the following contributions:

$$w(\theta) = w_{gg}(\theta) + w_{g\mu}(\theta) + w_{\mu g}(\theta) + w_{\mu\mu}(\theta) + w_{SN}$$
(4)

• Hard to separate terms with photo-*z* errors.

#### **OPTIMAL CROSS-CORRELATIONS**

Treat the Limber equation,

$$w(\theta) = \int dz \, W_A(z) \left[ W_B(z)\xi(r(\theta, z)) \right]$$
(5)

as an integral equation for the foreground window  $W_A(z)$ . Solve for the optimal  $W_A(z)$  that:

- **1** Maximizes the signal-to-noise ratio of  $w(\theta)$
- Isolates separate physical contributions to w(θ)<sup>1</sup>
   (e.g. clustering vs. lensing)

Improve self-calibration of systematics  $\rightarrow$  particularly photo-*z* errors.

Schneider (2014) arXiv: 1401.0537

<sup>&</sup>lt;sup>1</sup>Similar to Joachimi & Schneider (2010) "Intrinsic alignment boosting" 🚊 🕤 < 🤆

#### **OPTIMAL REDSHIFT WEIGHTING**

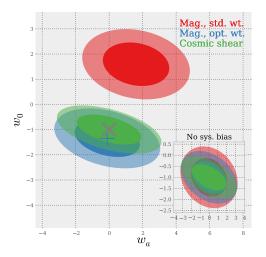
## The Limber equation is a *Fredholm integral equation of the 1st kind*,

$$w_{XY}(\theta) = \int_0^{\chi_{\infty}} d\chi \, W_X(\chi) K(\chi, \theta), \tag{6}$$

where  $K(\chi, \theta) \equiv W_Y(\chi)\xi(\chi\theta)$  and  $W_X(\chi)$  is to be optimized.

Use eigenvectors of *K* to describe the optimal solution space. But,  $K(\chi, \theta)$  is not Hermitian ( $K(\chi, \theta) \neq K(\theta, \chi)$ ).

A better kernel is,


$$C(\chi,\chi') \equiv \int d\theta K(\chi,\theta) K(\chi',\theta), \tag{7}$$

$$\int d\chi C(\chi, \chi') \psi(\chi) = \lambda \psi(\chi').$$
(8)

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

## LENSING MAGNIFICATION VS GALAXY BIAS SYSTEMATIC ERROR

DE Figure of Merit from magnification  $\approx 80\%$  that from shear.



#### Lesson:

The eigenvectors of the integration kernel provide a natural basis for optimized correlation function estimators.

• Generally, can expand the (unknown) systematic error in an orthogonal basis,

$$u^{\alpha}(\theta) = \sum_{i} u_{i}^{\alpha} \Phi_{i}(\theta)$$
(9)

• The clustering (cross-)correlation is similarly expanded as,

$$w_{\rm true}(\theta) = \sum_{i} w_i \eta_i(\theta) \tag{10}$$

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

- The best choice for systematics modeling is  $\Phi_i = \eta_i$ .
  - Don't care about modes orthogonal to  $\eta_i(\theta)$
  - Prior information: select subset of {η<sub>i</sub>} or bound the volume on {u<sub>i</sub>}.

To derive  $\eta$  in  $w_{\text{true}}(\theta) = \sum_{i} w_i \eta_i(\theta)$ , use the auxiliary symmetric kernel,

$$C_{\rm aux}(\theta, \theta') \equiv \int d\chi \, K(\chi, \theta) \, K(\chi, \theta'),$$
$$\int d\chi \, C_{\rm aux}(\theta, \theta') \, \eta(\theta) = \lambda \eta(\theta'), \tag{11}$$

the original source kernel can be reconstructed,

$$K(\chi,\theta) = \sum_{i=1}^{\infty} \sqrt{\lambda_i} \psi_i(\chi) \eta_i(\theta).$$
(12)

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

(Remember  $w(\theta) = \int d\chi W(\chi) K(\chi, \theta)$ )

### A FILTER FOR ANGLE-DEPENDENT SYSTEMATICS IN THE CORRELATION FUNCTION

Define,

$$\hat{w}(\theta) = \int d\phi \, w_{\rm obs}(\phi) f(\theta, \phi).$$
 (13)

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

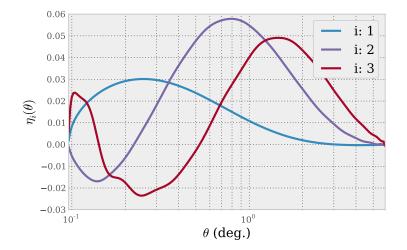
Can we find an *f* such that  $\hat{w}(\theta) \approx w_{\text{true}}(\theta)$ ?

# A FILTER FOR ANGLE-DEPENDENT SYSTEMATICS IN THE CORRELATION FUNCTION

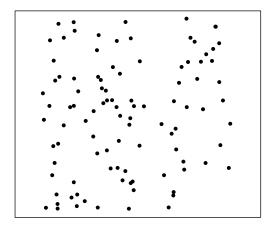
Define,

$$\hat{w}(\theta) = \int d\phi \, w_{\rm obs}(\phi) f(\theta, \phi). \tag{13}$$

Can we find an *f* such that  $\hat{w}(\theta) \approx w_{\text{true}}(\theta)$ ?

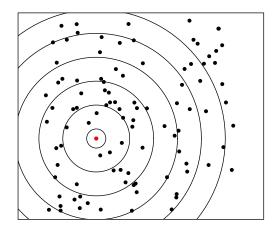

Define  $\tilde{\eta}_i$  such that,

$$\int d\theta \, \tilde{\eta}_i(\theta) \boldsymbol{w}_u(\theta) = 0. \tag{14}$$


Then let,

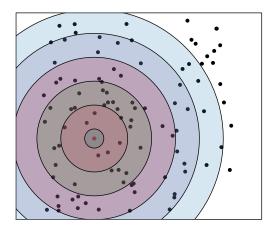
$$f(\theta,\phi) = \sum_{i=1}^{n} \sqrt{\lambda_{f,i}} \,\tilde{\eta}_i(\theta) \tilde{\eta}_i(\phi).$$
(15)

 $\Rightarrow f$  selects components of  $w(\theta)$  orthogonal to the systematics model.



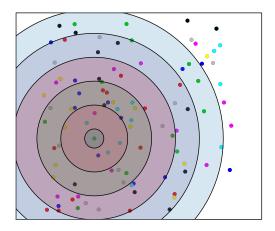

・ロト・西ト・ヨト・ヨー シック




х

◆ロト ◆舂 ト ◆臣 ト ◆臣 ト ○臣 - のへで




х

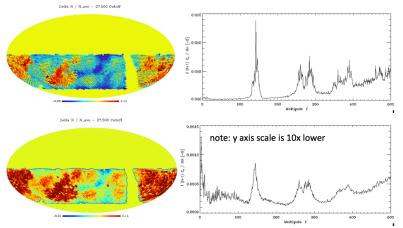
・ロト < 団 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >



х

・ロト < 団 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

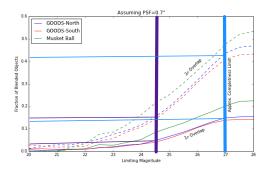



х

・ロト < 団 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Filtering the correlation function has limits. It's better to avoid imprinting systematic correlations wherever possible.

(ロ)


# DITHERING / FOOTPRINT



HEALPIX shows the angular power spectrum of  $\delta N/\langle N \rangle$ . Features at 100 $\langle | \langle 300 \rangle$  cause systematic errors in B.A.O. studies of dark energy, **but large dithers reduce these by a factor of 10**!!!

# PHOTOMETRY & CADENCE

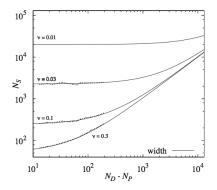
- Same patch of sky should ideally sample different airmass, pointing configurations, seeing.
- *'Catastrophic' blending* of objects could be a problem for photometry in LSST (but probably not DES).



Dawson, Jee, Tyson, MS

### COVARIANCES

Cosmological parameter inference requires specifying the covariance matrix of the angular correlations for evaluating the likelihood function.

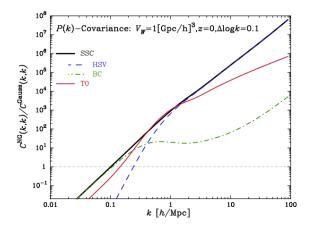

$$\hat{C}(\theta_i, \theta_j) = \frac{1}{N_r} \sum_{k=1}^{N_r} \left( w_k(\theta_i) - \bar{w}(\theta_i) \right) \left( w_k(\theta_j) - \bar{w}(\theta_j) \right)$$
(16)

#### Challenges:

- Require large numbers of realizations, N<sub>r</sub>
- Number of  $\theta$  bins becomes large with tomography / joint probes analyses
- Covariance can be a function of cosmology

# COVARIANCE ERRORS PROPAGATE TO PARAMETER ERRORS

Taylor & Joachimi (2014)




 $\nu \equiv$  fractional bias in parameter variance. Scales with (num. bins) / (num. samples)

990

### SUPER-SAMPLE COVARIANCE

A new (and important) contribution to the sample covariance from long-wavelength density perturbations. Takada & Hu (2013)



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

### SIMULATIONS - NOVEL APPROACHES

- Emulators
  - Heitmann, Habib et al. sub-percent accuracy in the power spectrum, mass function in highly nonlinear regime.
- Mapping across cosmologies
  - Angulo & White (2010) Explore cosmological models with a single high-res simulation?
- Mode-resampling
  - Schneider+(2011) Sample Gaussian statistics of large-scale modes in an *N*-body simulation in post-processing.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

• Explore models with different long-wavelength perturbations.

# SUMMARY

- Many systematics introduce spurious large-angle clustering
- Some of the most exciting discoveries could come from large angles!
- Synergies between DES and LSST for LSS:
  - DES will teach LSST:
    - Where new algorithms and systematics mitigation approaches are needed.
    - Important systematics we may not have thought of yet.
  - LSST can give DES:
    - Alternate data management approaches (e.g. Jim Bosch's talk yesterday on probabilistic PSF estimation)
    - PhoSim coupling of catalog generation and image systematics

### TOOLS – SOME USEFUL CODES I'VE NOTED

- STOMP "A library for doing astrostatistics on the celestial sphere" https://code.google.com/p/astro-stomp/
- CHOMP "Object oriented, cosmology and halo model theoretical prediction library" https://code.google.com/p/chomp/
  - GalSim "The modular galaxy image simulation toolkit" https: //github.com/GalSim-developers/GalSim
    - emcee "extensible, pure-Python implementation of Goodman & Weare's Affine Invariant Markov chain Monte Carlo (MCMC) Ensemble sampler" http://dan.iel.fm/emcee/current/
  - - ALPT Kitaura / Neyrinck

Agarwal, N., Ho, S., Myers, A. D., Seo, H. J., Ross, A. J., Bahcall, N., Brinkmann, J., Eisenstein, D. J., Muna, D.,
Palanque-Delabrouille, N., Pâris, I., Petitjean, P., Schneider, D. P., Streblyanska, A., Weaver, B. A., & Yèche, C. 2013

Dodelson, S. & Schneider, M. D. 2013, arXiv, D88, 063537

- Menard, B., Scranton, R., Schmidt, S., Morrison, C., Jeong, D., Budavari, T., & Rahman, M. 2013, arXiv.org, 4722
- Ross, A. J., Ho, S., Cuesta, A. J., Tojeiro, R., Percival, W. J., Wake, D., Masters, K. L., Nichol, R. C., Myers, A. D., de Simoni, F., Seo, H. J., Hernandez-Monteagudo, C., Crittenden, R., Blanton, M., Brinkmann, J., da Costa, L. A. N., Guo, H., Kazin, E., Maia, M. A. G., Maraston, C., Padmanabhan, N., Prada, F., Ramos, B., Sanchez, A., Schlafly, E. F., Schlegel, D. J., Schneider, D. P., Skibba, R., Thomas, D., Weaver, B. A., White, M., & Zehavi, I. 2011, Monthly Notices of the Royal Astronomical Society, 417, 1350

Sawangwit, U., Shanks, T., Abdalla, F. B., Cannon, R. D., Croom, S. M., Edge, A. C., Ross, N. P., & Wake, D. A. 2011, MNRAS, 416, 3033 Sawangwit, U., Shanks, T., Cannon, R. D., Croom, S. M., Ross, N. P., & Wake, D. A. 2009, arXiv.org, 2228

Schmidt, S. J., Ménard, B., Scranton, R., Morrison, C., & McBride, C. K. 2013, Monthly Notices of the Royal Astronomical Society

Takada, M. & Hu, W. 2013, arXiv.org

Taylor, A. & Joachimi, B. 2014

Thomas, S. A., Abdalla, F. B., & Lahav, O. 2010, arXiv.org, 241301

< ロ > < 同 > < 三 > < 三 > 、 三 、 の < ()</p>