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Why Simulate?

• Cosmology today is driven by big data and high statistics !

• For all cosmology measurements, understanding systematic 
effects is key!

• Forward-modelling, or simulations, is a way to understand how 
complicated physical effects and measurement procedures couple 
into the data analysis!

• End-to-end simulation: cosmology - instrument - data pipeline!

• Simulations are only as good as the level of physics we put in
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End-to-end Simulation @ LSST

Systematics in Weak Lensing for LSST I 3
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where W (x1, x2) is a weighting function designed to reduce
noise in data. We will use this definition throughout the
paper. (Note there are also other definitions of ellipticities
in literature)

Under a weak gravitational field ⌥, the e⌅ect of grav-
itational lensing is just a linear mapping between the sky
and the observer’s frame, which could be expressed by the
Jacobi matrix:
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Galaxy shapes are distorted, or ”sheared” according to the
gravitational fields, causing the measured ellipticities to dif-
fer from the intrinsic ellipticities of an object in a simple
way (Bartelmann & Schneider (2001)):

 o =
 s + g
1 + g s

(4)

where  s is the intrinsic galaxy ellipticity and  o is the ob-
served galaxy ellipticity.

Since the galaxies are inherently not circular. By care-
fully averaging over an ensemble of random galaxy elliptic-
ities (and assuming the shear is weak), one arrives at an
estimate of the local shear.
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The shear values are then used to construct shear-shear
correlation functions, which is just a realization of the shear
power spectrum P (l) in real space:
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here t,⇥ is just a general decomposition of the shear spinor
along the line connecting the pair of galaxy in question.
If � is measured in arbitrary Cartesian coordinate sys-
tem � = �1 + i�2 with 1,2 denoting the two axis, then
the rotated shear is calculated via �t = �Re(�e�2i⇥) and
�⇥ = �Im(�e�2i⇥), where ⌦ is the argument of the vector
connecting the pair of galaxies. J0,4 are Bessel functions that
come out of the Fourier integration.

Similarly, the shear power spectrum is just a Fourier
transform of the correlation function:
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By asserting that the shear power spectrum approximates
the convergence power spectrum in the weak limit [ref], we
arrive at an observed projected convergence power spectrum
that is determined by the underlying cosmological assump-
tions:
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where W (�) is the lensing e⇧ciency function related to the
redshift selection function ns(�s) for the specific survey:
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⇤m and H0 are the matter density and Hubble parameter
today, P�(k) is the 3D convergence power spectrum, and the
subscript s denotes that of the source.

This cosmological probe can be easily extended to in-
clude sources from di⌅erent redshift bins. Where we will use
Cij to denote the projected shear power spectrum over two
di⌅erent redshift bins zi, zj :
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2.2 Shear systematics

A standard way to quantify how systematics degrade the
constraints on Dark Energy parameters is to use the
extended Fisher Matrix formalism derived in Amara &
Réfrégier (2008). We now state this in terms of systemat-
ics in the shear-shear the correlation function and the shear
power spectrum described above.

It can be shown that in the present of some uncorrected,
correlated systematics s on the shear measurements

�̂ = � + s (12)

The usual estimators for the shear-shear correlation function
and the shear power spectrum in equation (6) and (8) would
be biased: (see Appendix A for derivation)
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⌅P̂ (l)⇧ = P (l) + P s(l) (14)

where ⇧s±(⇥) and P s(l) are the correlation function and
power spectrum for s. The uncertainties in these estimators
can be measured by its covariance matrices, which turns out
to be simply additive:
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s are the shape noise terms defined in (A).
We are now ready to relate this with the cosmologi-

cal constraints. Amara & Réfrégier (2008) found that the
derived cosmological parameter pi from a measured shear
power spectrum containing systematics will be biased by

b[p̂i] = ⌅p̂i⇧ � ⌅p̂truei ⇧ = (F�1)ijBj (17)

Fij is the usual definition of the Fisher’s Matrix for the
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Figure 1: Kolmogorov Turbulence model of the atmosphere I will replace the screen with
one from the new code - change left panel to a schematic version without real data
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cal constraints. Amara & Réfrégier (2008) found that the
derived cosmological parameter pi from a measured shear
power spectrum containing systematics will be biased by

b[p̂i] = ⌅p̂i⇧ � ⌅p̂truei ⇧ = (F�1)ijBj (17)

Fij is the usual definition of the Fisher’s Matrix for the

c� 2011 RAS, MNRAS 000, 1–13

Closed-loop Framework

ADDGALS CALCLENS

ImSim!
UFIG!
+ data!
(GalSim)

DESDM

CONCLUSION 13

small.

Figure 1: Kolmogorov Turbulence model of the atmosphere I will replace the screen with
one from the new code - change left panel to a schematic version without real data

BCC!
(MICE)



Chihway Chang, 03-24-2014 @ Fermilab

• LSST and DES are on different stages of the project, and the 
simulation effort evolves accordingly!
!

!

!

!

!

!

!

!

End-to-end Simulation

LSST!
!
!
!
!
!
➡ tighter science requirements!
➡ being built at the same time!
➡ more data, more time  

DES!
!
!
!
!
!
➡ smaller scale in all aspects!
➡ data is coming in!
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Application @ DES SV
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• Science Verification data: ~250 deg^2!
!

!

!

!

!
• Science projects under way and require validation on simulations.!

!

!

!

Application @ DES SV
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• Science Verification data: ~250 deg^2!
!

!

!

!

!
• Science projects under way and require validation on simulations.!
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Application @ DES SV

(FLAGS_I <=3) AND NOT (((CLASS_STAR_I > 0.3) AND (MAG_AUTO_I < 18.0)) 
OR ((SPREAD_MODEL_I + 3*SPREADERR_MODEL_I) < 0.003) OR ((MAG_PSF_I > 
30.0 AND MAG_AUTO_I < 21.0))))

e.g. what does this actually mean?
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Application @ DES SV

• The BCC-UFIG project (ongoing):!
• Connecting mock galaxy catalogs (BCC) with pixel-level 

simulations (UFIG) with catalog-level data products (DESDM)!
• Designed to match the image properties in the SV data!
• Simple data model but self-consistent cosmology!

!

!

!

!
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Application @ DES SV

• The BCC-UFIG project (ongoing):!
• Connecting mock galaxy catalogs (BCC) with pixel-level 

simulations (UFIG) with catalog-level data products (DESDM)!
• Designed to match the image properties in the SV data!
• Simple data model but self-consistent cosmology!
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Application @ DES SV

➡ g-band coadd!
➡ seeing: 1.26”!
➡ airmass: 1.06!
➡ exposure time: 663.2 s!
➡ limiting magnitude: 24.07
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Application @ DES SV

➡ simulated training set!
➡ p(z) code from Carlos C.!
➡ understand eg. how 

photometric errors couple 
with photo-z errors
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Summary

• In this generation of cosmology with large surveys, simulations 
play a crucial role in understanding our science analyses.!

• Both DES and LSST have plans for an integrated end-to-end 
simulation framework.!

• The simulations are developed according the the need of each 
project, and has of course lots to learn from each other.!

• We are implementing the BCC-UFIG framework for DES SV data.    
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Other Entertaining Ideas
LSST

D
ES
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• LSST Photon Simulator (PhoSim): Peterson et al. (in prep)!
• Fast Monte Carlo photon raytracing!
• Detail physical model of the atmosphere and instrument!

!
!
!
!
!
!
!

Image Simulation @ LSST
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Image Simulation @ DES

• Ultra Fast Image Simulator (UFIG): Berge et al. (2012)!
• Speed ~ SourceExtractor!
• Currently with simple models of the atmosphere and instrument!
• Well integrated in the end-to-end framework!

!

!

!

!

Figure 2: Top: typical Subaru image. Bottom: UFig simulation. Both patches have an area of 400×300 pixels2, or 1.3×1 arcmin2.
The dynamic scales are the same for both panels.
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Figure 2: Top: typical Subaru image. Bottom: UFig simulation. Both patches have an area of 400×300 pixels2, or 1.3×1 arcmin2.
The dynamic scales are the same for both panels.
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Berge J. et al., 2012
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Image Simulation @ LSST
C

hang C
. et al., 2013
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Simulation vs. Surveys

!

!

!

• Big data, big collaborations, big simulations, big resource!

• End-to-end simulation: cosmology - instrument - data pipeline !

• All parts are important, but connecting all of them into something 
coherent and survey-specific is also very important

D
ES

LSST
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End-to-end Simulation

• LSST and DES are on different stages of the project, and the 
simulation effort evolves accordingly!
!

!

!

!

!

!

!

!

LSST!
➡ tighter science requirements!
➡ being built at the same time!
➡ more data, more time  

Current usage:!
testing DM, algorithm development, estimation/forecast of system performance 
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End-to-end Simulation

• LSST and DES are on different stages of the project, and the 
simulation effort evolves accordingly!
!

!

!

!

!

!

!

!

DES!
➡ smaller scale in all aspects!
➡ data is coming in

Current usage:!
verification of science analyses, calibration, understanding systematic issues


