

Authentic Data for Young People Activities from QuarkNet and SDSS Masterclasses – Investigations – Research

Marge Bardeen – QuarkNet - mbardeen@fnal.gov

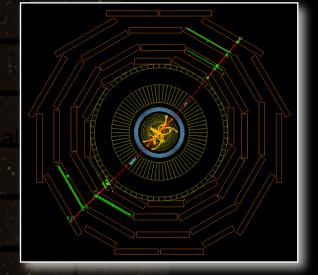
QuarkNet

- a particle physics education *collaboration* embedded in the research community at 53 universities and labs across the country with

a national infrastructure that facilitates participation of individual physicists

- a *long-term professional development* program for high school physics teachers and

- a workforce development program for their students



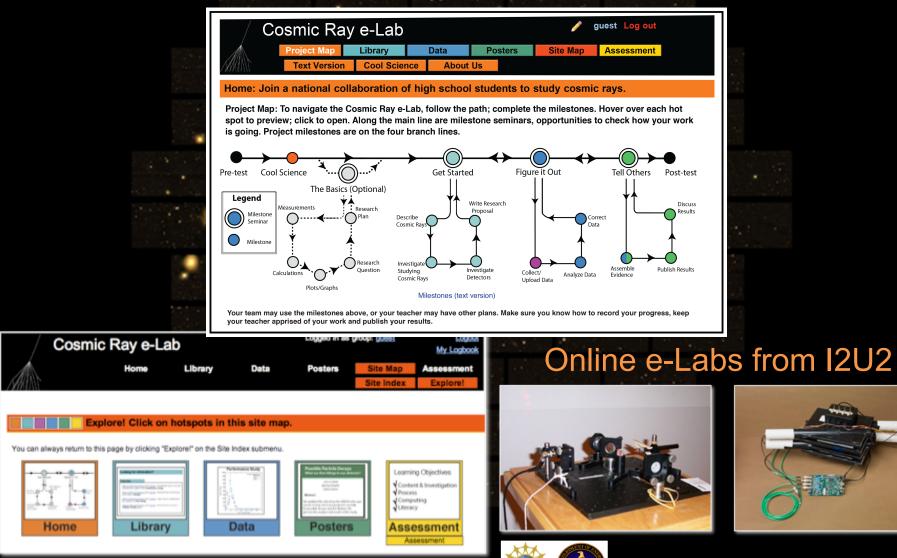
Hands-on Analysis with Your Data and You

Data Measurement Exercise

Masterclasses

Facility Tour

Videoconference

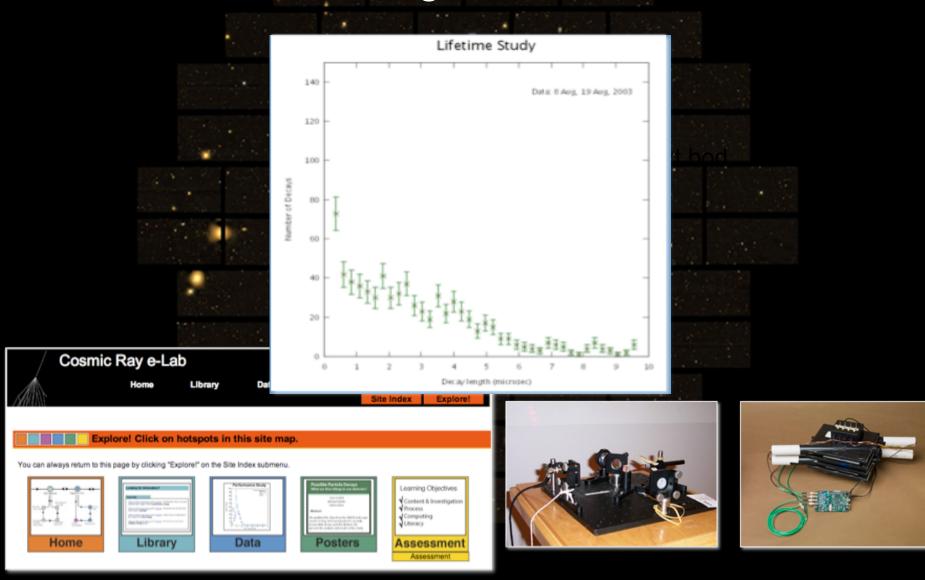

Tips for Effective Masterclasses

Get Real – Engage – Tell Your Stories

Share useful examples; show relationships to everyday life.

- Bring students into your environment.
 - Tour; visit research areas.
- Give presentations; answer questions at students' level.
 - Focused, short, engaging
 - Talk about your experiences.
- Some preparation required school ne

Student Guided Investigations



M. Bardeen, DI

Online Investigations with e-Labs

Online Investigations with e-Labs

Online Investigations with e-Labs

۰ lot	Detector Exp	ploration	I Studies					Help 👔
Datase	et Selection < D	Data Selection	n < Plot Selection	\mathbf{D}				
uts								¢
electio	n (Zoom) (Cut	Reset	Axes Max Y:	(Set)		Log Y Plot Bi	n Width: 1	(Set)
ave	Sav	/e Plot	Animation			U U		
				μ ⁺ μ ⁻ Ι	Mass, runs	i 1		
90								■ µ ⁺ µ ⁻ Mass
80							_	
70							[L	
60								
							┟└	
50								
40								
30								
20								
							ſĹ	
10	<u></u>		_		Π_Γ	_'	ſ	~
₀⊵	<u>10 لیمېن محم</u> 10	<u>40041-0</u> 20 3	<u>27 non</u> 30 40	50 0	<u>الر الر 10</u>		90	100 110
					Mass (GeV/	c ²)		
(All N	h						Sit	te Index Explo
m_{11}								
		xplore!	Click on hots	pots in ti	his site n	nap.		
You ca	in always return to	this page b	vy clicking "Explore!"	on the Site I	ndex subme	nu.		
Г					tempo Buly	Possible P	writele Decays	Learning Objections
-	when when			11			the second s	Learning Objectives

Data

Posters

Library

Home

Explore an Event

Tips for Effective e-Lab Workshops

Get Real - Engage – Time to Reflect

A two- to three-day teacher workshop is essential for effective classroom implementation.

- Let them experience the e-Lab as their students will.
- Correlate data to the real detectors.
- Provide engaging presentations.
 Background material
- Answer questions at their level of understanding.
- Provide time for teachers to talk about teaching strategies.

Research Experiences

QuarkNet Research Team

- 4 students
- 1 teacher

6 weeks Engaged in all aspects of research

Tips for Effective Research Programs

Students become part of your research team:

- They experience all aspects of the scientific process.
 - Troubleshooting
 - Calibrating equipment
 - Use of journals or logbooks
 - Why data are analyzed in a particular way
 - Importance of communicating ideas & results
 - Ø
- They report findings.
 - Presentations
 - Posters
 - Abstracts & papers
- They work at least four weeks.

What Students Gain

A broader frame of reference for science:

How scientists make discoveries How they talk about their work

How We Know: Data from QuarkNet

Pre- Post-Tests Teacher & Student Surveys Scientific Poster Review Concept Maps

Particle Physics Outreach to Secondary Education

Marjorie G. Bardeen, K. Erik Johansson and M. Jean Young

Annual Review of Nuclear and Particle Science 2011.61:149-70 (nucl.annualreviews.org)

Activities from SDSS

SkyServer

An interface to cataloged SDSS data Simple to get started; direct access Download catalog data in comma-separated-variable format.

Originally conceived for students Became the portal to SDSS data for everyone.

Various activities for classrooms promote "authentic research" and "authentic data."

Over 495 million web hits Over 74 million SQL queries through December 31, 2008 (i.e., the end of the SDSS-II)

Activities from SDSS Galaxy Zoo and Other Web Tools

Citizen scientists classify galaxy images morphologically, extending what can be done by machine.

More than a million participants

An example of what is possible in terms of public engagement in science, e.g., spawning Zooniverse - https://www.zooniverse.org/

Developed by a team of collaborators from the United Kingdom and the United States.

SDSS data used in Google Sky and WorldWide Telescope

Activities from SDSS Other SDSS Outreach

Planetariums, science museums and centers

Educator workshops and professional development

Direct outreach to K-12 students

Research projects for undergraduate students

Except for the SkyServer, SDSS outreach was driven by interested individuals at the collaborating institutions. It was monitored but not directed by the project.

EPO Discussion Session

This workshop is exploring scientific synergies between the two surveys.

We will explore synergistic EPO strategies too.

Thursday Racetrack, 7th Floor Crossover

"The U.S. particle physics community recognizes the critical importance of consistent and coherent communication, education and outreach ." CSS final report