

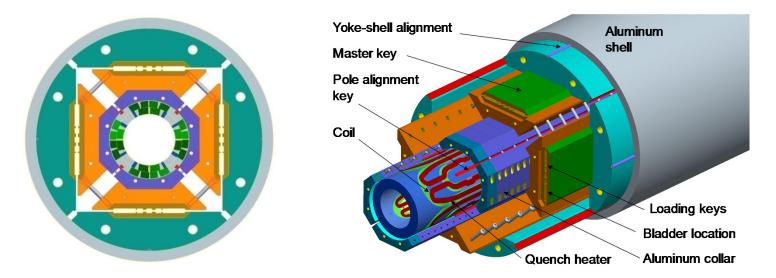
High Field Quadrupole (HQ) Program

GianLuca Sabbi February 17, 2014

Presentation Outline

1. Status of the HQ program

- Main design goals and parameters
- Progress since the last DOE review
- Impact of the HQ results on HiLumi and LARP
- 2. HQ Plans in the context of the Risk Reduction Strategy for the Construction Project
 - HQ Schedule
 - Goals and status of the HQ02b test at CERN
 - Goals and status of HQ03



<u>Goal</u>: demonstrate all performance requirements for Nb₃Sn IR Quads in the range of interest for HiLumi (magnetic, mechanical, quench protection etc.) <u>Main parameters</u>: 120 mm aperture, 15 T peak field at 220 T/m (1.9K)

• Three times the energy and force levels compared to 90 mm

First LARP design incorporating all provisions for accelerator field quality:

- Control of geometric, saturation, magnetization, eddy currents
- Alignment at all stages of coil fabrication, assembly & powering

HQ Program Contributions

 Cable design and fabrication 	LBNL
 Magnetic design & analysis 	FNAL, LBNL
 Mechanical design & analysis 	LBNL
 Coil parts design and procurement 	FNAL
 Instrumentation & quench protection 	LBNL
 Winding and curing tooling design 	LBNL, FNAL
 Reaction and potting tooling design 	BNL
 Coil winding and curing 	LBNL
 Coil reaction and potting 	BNL, (LBNL)
 Coil handling and shipping tooling 	BNL
 Structures (quadrupole & mirror) 	LBNL, FNAL, BNL
 Assembly (quadrupole & mirror) 	LBNL, FNAL, (CERN)
 Magnet test 	LBNL, CERN, FNAL
 Accelerator Integration 	BNL, LBNL, FNAL, CERN

- HQ01 models: despite high failure rates in first-generation coils, a high performing set was selected in 3 cycles of assembly and test
 - April 2012: HQ01e-2 tested at CERN, reached 184 T/m (1.9K)
 - Above linear scaling from TQ (240/120*90=180 T/m) supporting a further increase to 150 mm, with significant benefits to HL-LHC
 - Very promising results in many areas: simultaneous control of pre-load and alignment, training, field quality, quench protection
- Strong indications that design flaws leading to coil failures had been understood and corrected in second generation coils
 - June 2012: HQM04, tested at Fermilab, reached 97% SSL at 4.6K and 94% at 2.2K
 - Successful demonstration of revised coil design
 - No issues with new cable process including a core

From HQ01 to HQ02

Changes in coil design and fabrication to <u>prevent conductor damage and</u> <u>insulation failures</u> observed in first-generation coils:

- Decreased axial coil strain by progressively increasing pole gaps to 4 mm/m
- **Decreased azimuthal compaction** during reaction using smaller strand/cable
- Aluminum oxide insulating coatings for coil parts to prevent shorts
- Increased insulation thickness under protection heaters and between coil layers
- New coil parts design to account for extra insulation and winding experience
- More refined/stringent electrical QA at all stages: coil fabrication, assembly, test

Additional changes implemented to address <u>field quality and production issues</u>:

- Cored cable to control eddy currents (for field quality and quench performance)
- **1-pass cable** for more efficient cabling process (also driven by core)
- Braided insulation replacing fiberglass sleeve for long unit lengths
- **Ti-doped conductor** to confirm performance for future procurements

Improved features and processes of HQ coils are now the baseline for QXF coils

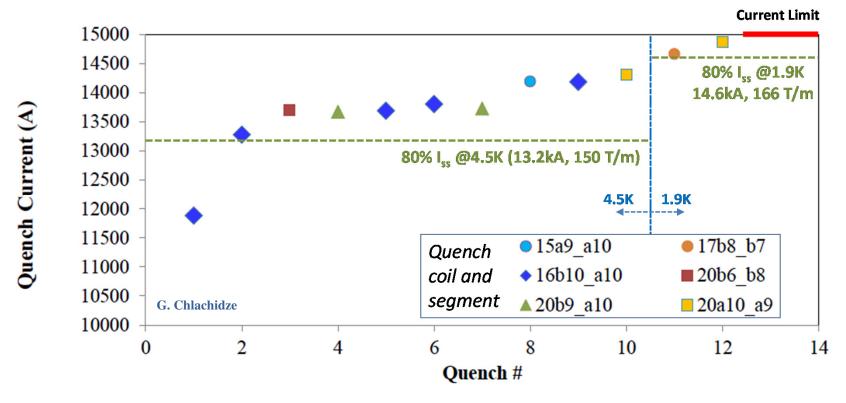
New cable with core

D. Dietderich

- Large dynamic effects were observed in previous LARP quadrupoles
 - Due to low inter-strand resistance (R_c) after coil reaction
 - Affects critical performance requirements: field quality, fast discharge
- A 25 μm stainless steel core was introduced in coil 12 for a first mirror test
- The development of second-generation HQ cable with reduced dimensions incorporated a 25 μ m stainless steel core as the baseline
 - Partial coverage (8 mm, about 60% of the available width)
 - Biased toward the thick edge for mechanical stability

Parameter	Unit	HQ01e	HQ02a
Core material	-	-	SS316L
Strand diameter	mm	0.80	0.778
Cable width	mm	15.15	14.77
Cable mid thickness	mm	1.437	1.376

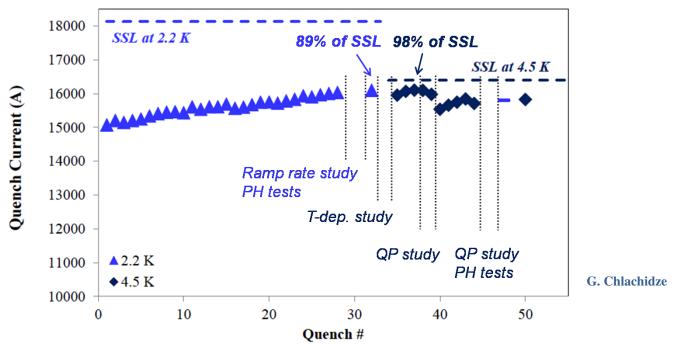
<u>Note</u>: second generation cable proved more difficult to wind, requiring the development of new tools and more refined procedures



Test conditions: temperature range 1.9-4.6K, but with a current limit of 15kA

<u>Results</u>: - 1-2 quenches to nominal operating point (80% SSL) at 4.5K and 1.9K

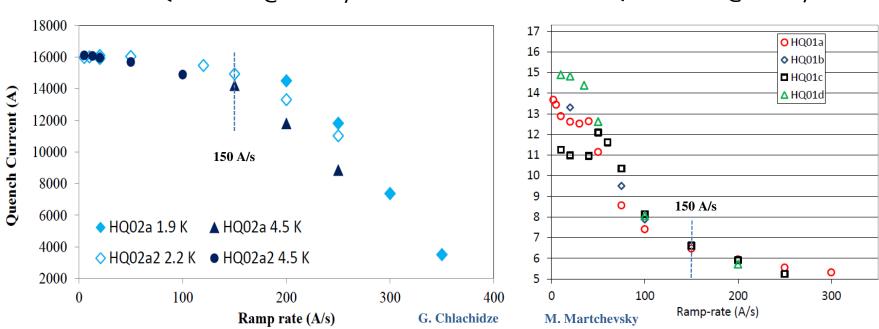
- 15kA, 166 T/m limit quickly reached at 1.9K and retained at 4.5K
- Quenches in high-field pole area of all coils, no specific limitations


HQ02a-2 Quench Performance

<u>Test Conditions</u>: magnet was mounted on a different header that removed the current limitation, but with a minimum temperature limitation of 2.2K

<u>Results</u>: – No detraining after thermal cycle: first quench above 15 kA

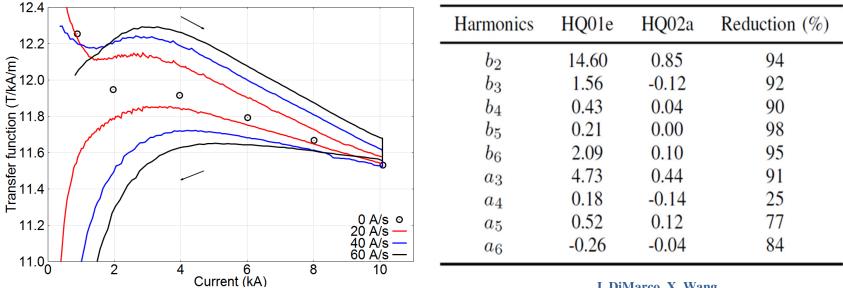
- Slow training at 2.2K, up to 16.2kA, T/m (89% SSL)
- Quench current fully retained at 4.5K, corresponding to 98% of SSL
- Quenches in high-field pole area with no localized limitation



HQ02a Ramp Rate Dependence

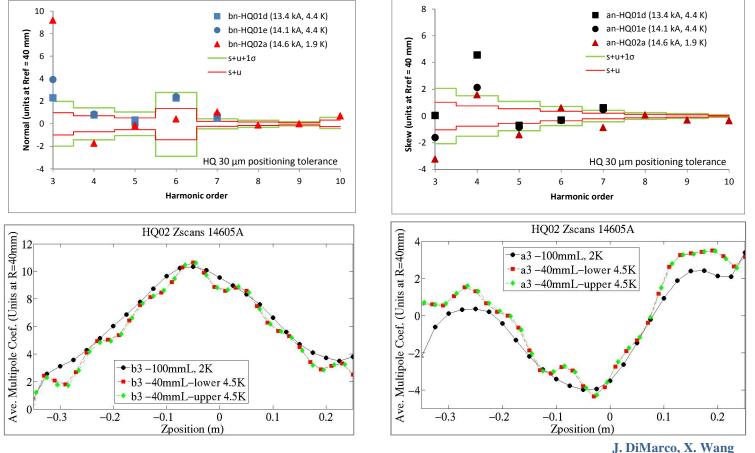
- Dramatic reduction of ramp rate dependence with cored cable
 - Reached nominal 14.6 kA (80% SSL) with ramp rates up to 150 A/s (1.9K)
 - Safe discharge from nominal level with ramp rates up to 300 A/s
- Partial core coverage is sufficient to control eddy currents while maintaining sufficient current sharing and stable performance

HQ02: 15kA @ 150 A/s


HQ01: 6.5 kA @150 A/s

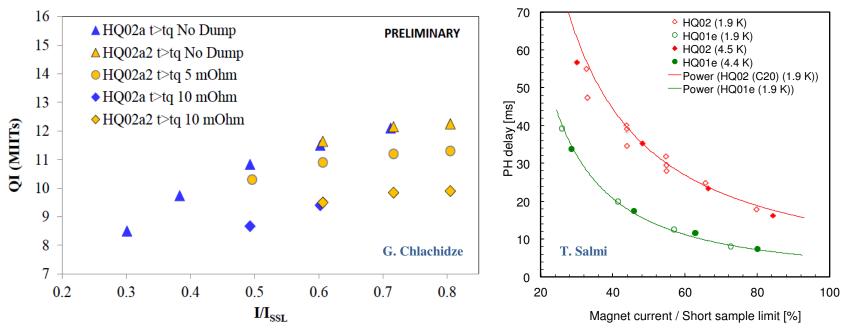
Eddy current harmonics

- Cored cable increased the effective R_c from 0.1-0.4 $\mu\Omega$ (HQ01) to 2-4 $\mu\Omega$ • (HQ02) with a corresponding reduction of the errors by a factor 10-20
- Increased R_c also results in lower variability of the effect from coil to coil, • allowing more accurate prediction and correction of the residual errors
- HQ modeling and measurements will be applied to optimize core design • for QXF


J. DiMarco, X. Wang

HQ02a Geometric Field Quality

- Higher order harmonics (n>4) consistent with 30 μm positioning tolerances
 ✓ Comparable with NbTi technology
- However, lower orders (n=3,4) show larger errors requiring better uniformity of coils production and/or correction capabilities (to be assessed in HQ03)



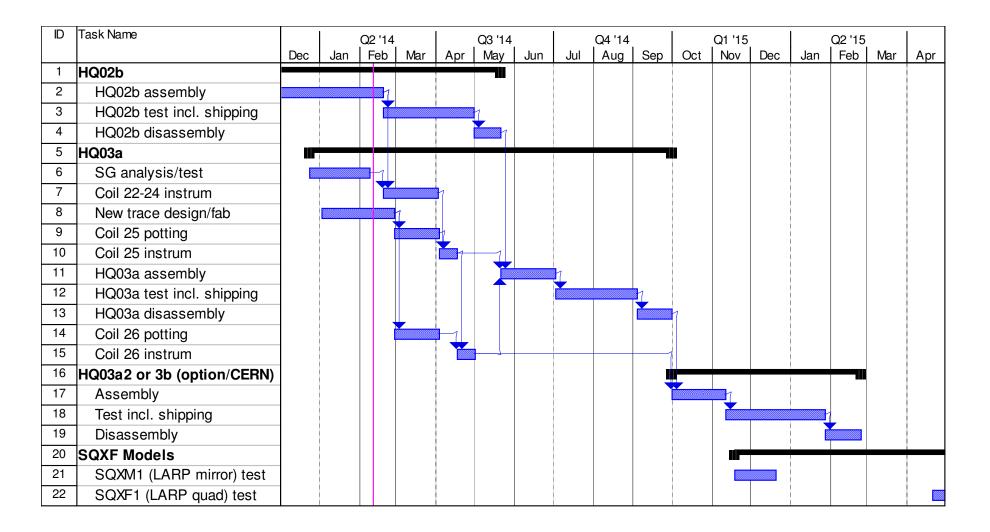
HQ02a Protection Studies

- Quench integral measurements in relevant conditions for operation in the accelerator
 - Partial heater coverage to facilitate heat transfer and assess failure modes
 - (Lack of) efficacy of a smaller external resistor to accelerate current decay
- Detailed characterization of quench heater performance to validate calculations and support the design of QXF heaters
 - − Significant increase of the heater delay with the increased thickness of the kapton insulation in HQ02 (75 μ m vs. 25 μ m) → input for QXF

Summary of HQ02a Results

- Fast training to nominal, no retraining after thermal cycle, and robust electrical performance with 4 new coils
 - Demonstrates key requirements for production and accelerator operation
 - Ramp rate dependence: large margins in up ramps, and safe fast discharge
 - Structure can simultaneously provide required pre-load and alignment
- Achieved short sample performance at 4.5K
 - No damage to the conductor during fabrication, assembly and operation
 - Allows accurate characterization of quench protection limits in HQ02b
- Field quality
 - Significant reduction of eddy current harmonics achieved, as was required
 - Need to decrease the low order geometric harmonics through better fabrication tolerances and/or correction methods
- Quench protection
 - Detailed performance characterization for different heater/extraction settings
 - However, studies of protection limits and alternative protection methods (e.g. coupling loss induced quench) had to be postponed to HQ02b/03

HQ in the Risk Reduction Phase



- HQ has been used as the baseline for QXF design in many key areas
 - Cored cable, coil design and fabrication, mechanical structure
- HQ is presently the best platform available to get experimental feedback on issues of critical importance for HiLumi design and QXF development, in a fast and cost-effective manner
 - Quench Performance: design/operating margins, pre-load windows
 - Field Quality: assessment of random field errors with more uniform coil process; correction based on warm measurements; injection errors
 - Quench Protection: limits for performance degradation; optimized heater design; new quench protection tools
- The above issues also have significant impact on HL-LHC machine design and production planning
 - Machine: IR layout, corrector strength, powering and protection systems
 - Project: QXF specifications, tooling design, test capabilities/cost

HQ Schedule

HQ02b Test Goals

- 1. Complete quench training at 1.9K
 - Increased pre-load to support faster training at the higher current levels
 - Feedback on mechanical design windows for optimal performance
- 2. Assess performance of CLIQ system for magnet protection
 - Wish list includes provoked, natural and reference quenches
 - Opportunities for optimization are being discussed
- 3. Study of quench protection limits
 - MIITS budget before start of permanent degradation
 - Additional degradation down to minimum performance requirements

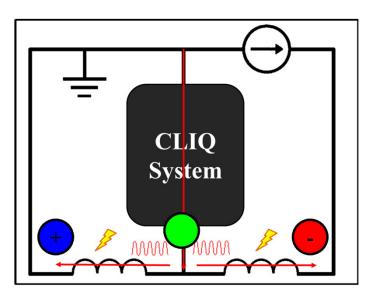
Additional goals:

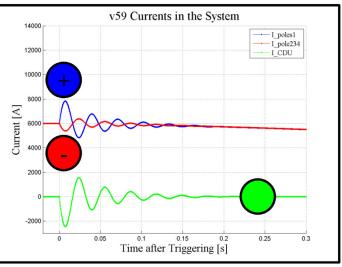
- Incorporate/characterize new instrumentation (QA, acoustics etc.)
- Demonstrate/validate methods to incorporate magnetic shims

Not included in this test (due to schedule/resource/infrastructure constraints)

- Robustness studies: large number of cycles, full accelerator cycle
- Cold magnetic measurements (warm measurements are included)

CLIQ Protection System Tests

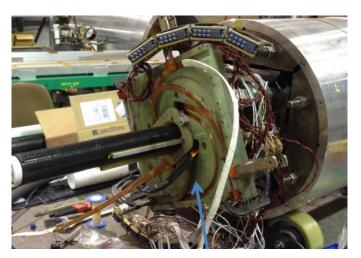


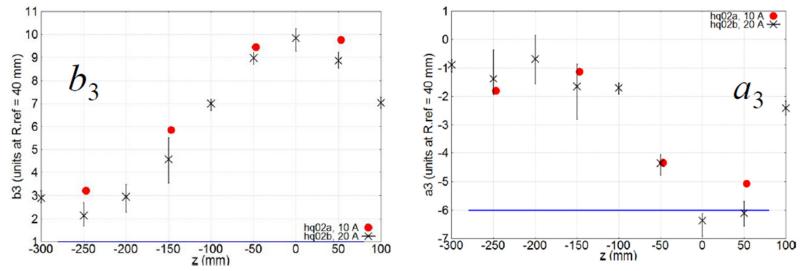

Concept:

- CLIQ = Coupling Loss Induced Quench system under development by CERN
- Capacitive discharge to induce fast oscillations of the transport current (ref: IEEE Trans. Appl. Superconductivity 24 (3) June 2014)
- May be required for QXF to complement traditional approaches based on quench heaters and energy extraction

Goals for HQ02b:

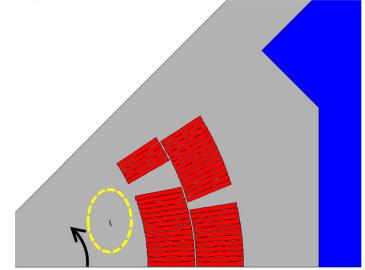
- First test of CLIQ on a Nb₃Sn magnet
 - Higher energy density required to provoke and propagate a quench in the coil
- Comparison with heater performance: quench integral, hot-spot temperature, development of quench resistance

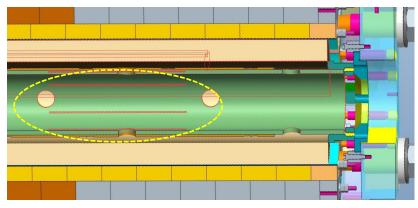



HQ02b Warm Measurements

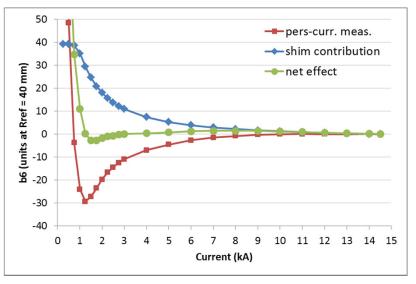
- Fermilab FERRET system successfully tested at LBNL during HQ02b assembly
- Demonstrated good accuracy and warmcold correlation
- HQ03 assembly will include field quality correction based on warm measurements
- Impact on machine design and production cost

J. DiMarco, X. Wang



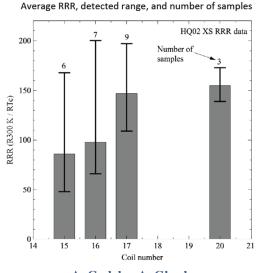


Control of Injection Field Quality



- Thin iron strips at selected angular locations can compensate for persistent current effects
- HQ02b will include shims to evaluate the mechanical assembly and perform warm measurements
- Full test and cold measurements in HQ03

HQ03 Goals and Status

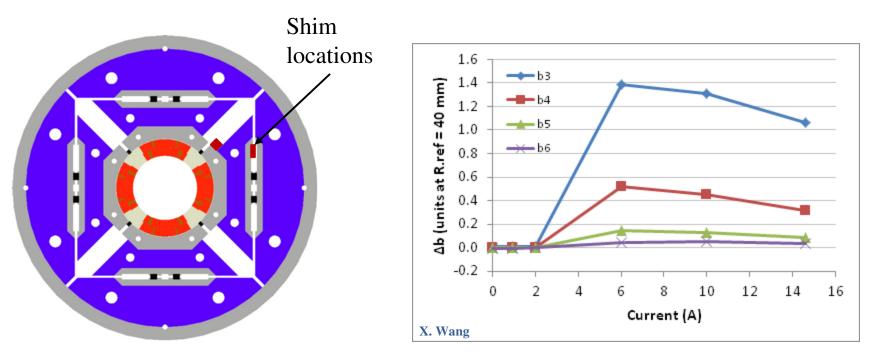


Launched after the Napa collaboration meeting (4/13) with strong interest by HiLumi

Main goals:

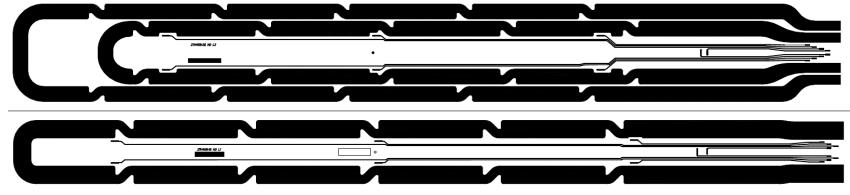
- Reproduce HQ02 results: quench performance, cored cable, protection studies
- Demonstrate better uniformity of coil dimensions and properties
 - Despite a significant improvement from HQ01, the HQ02 coils still show differences that reflect ongoing optimization of design and fabrication processes, and variability of components (conductor, parts)

Status: three coils impregnated and awaiting SG installation, two coils reacted


Design/process changes introduced				
HQ02 coil series				
Increased heater insulation to 75 mm				
Applied coatings to selected end parts/surfaces Decreased reaction temperature to increase RRR				
Applied coating to Ti pole				
Tested/corrected issues with new set of parts				
HQ03 coil series				
New design of end parts and fully coated				

A. Godeke. A. Ghosh

Control of Collision Field Quality


- Several past studies including test/application in magnets (RHIC, MQXB)
 - Typically relying on 8 independent shims at quad-symmetric locations
- Design goal: sufficient correction strength at high field, minimal saturation
- Correction will be attempted in HQ03 based on magnetic measurements, and results used to assess/revise the QXF field error tables

QXF Heater Design Evaluation

New HQ heaters for coil 25-26

M. Martchevsky, D. Cheng

- The main design features of the QXF heaters were selected in December
 - Key parameters: voltage, power, distance between stations etc.
 - OL: independent heaters for mid-plane and pole blocks for redundancy
 - IL: leave 50% of available surface free to allow heat transfer to cold bore
- In order to evaluate the performance of this approach, the HQ heaters were redesigned using the same concepts and are currently being fabricated
- Impregnation of the last two coils #25 and #26 was postponed in order to incorporate these heaters
- No delay to the HQ03 assembly and test (schedule driven by HQ02b test)

- 1. Accomplishments and implications for LARP and the HiLumi LHC Project
 - HQ demonstrated that Nb₃Sn IR Quadrupoles can <u>meet all key</u> requirements for the HiLumi LHC
 - HQ results provided a technical foundation for HiLumi LHC, leading to the successful completion of the LARP R&D phase, and the start of the transition toward a construction project
- 2. Goals and Plans in the context of the Risk Reduction Strategy for the Construction Project
 - Main experimental reference to set the QXF specifications that are driving the new IR design (HiLumi LHC Design Study)
 - Best experimental platform to support a range of critical decisions for QXF development in the near term