

QXF Coil Fabrication & Tooling Reaction / Impregnation

Jesse Schmalzle, BNL February 17, 2014

Outline

- Tooling design
- Coil fabrication
- Status
- Summary

Coil Tooling Design

- QXF tooling design is based on tooling used successfully for LQ and HQ.
 - Reaction & Impregnation Tooling:
 - Stainless steel fixtures used to react and impregnate coils.
 - Full length base plate, top plate, side rails.
 - Mandrel and form block pieces are short blocks, approximately 50 mm long.
 - Thin stainless steel liner inside form blocks.
 - End plates seal the ends.

Coil Tooling Design

- QXF tooling design is based on tooling used successfully for LQ and HQ.
 - Coil Lifting Fixture:
 - Rigid support for handling cured coil or impregnated coil.
 - Reacted coil not handled until after impregnation.
 - Coil Shipping Fixture:
 - Coil support tube mounted on rubber shock mounts.

Make connection between Nb₃Sn conductor and NbTi extension leads.

Coil Fabrication

- Coil fabrication procedures are well established and documented from LQ and HQ.
 - Travelers used on the shop floor provide step by step instructions, place for technicians to sign-off as operations are completed. Engineering sign-off at key points, e.g. after electrical checks.
 - QXF travelers are based on most recent HQ travelers.
- Facilities / Infrastructure is in place at multiple labs.
 - Reaction ovens at 3 labs (accommodate 4m coils).
 - Vacuum impregnation facilities at 3 labs.

Coil Fabrication

Typical Reaction Impregnation schedule:

ID	Task Name	Duration	1st Quarter			
			Sep	Oct	Nov	Dec
1	Coil Reaction Impregnation	58 days		*		30
2	prep for reaction	10 days				
3	reaction	11 days			oven	
4	coil leads / insulation	5 days				
5	outer layer prep / trace install	6 days				
6	inner layer prep / trace install	6 days				
7	impregnation	9 days				tank
8	coil removal / prep	7 days				
9	final prep / QA	4 days				

Procedure Outline:

Reaction:

- Base plate and mandrel blocks laid out on assembly table.
- Cured coil placed into reaction mandrel blocks.
- Outer layer covered with fiberglass cloth and mica paper.
- Reaction liner, form blocks and top plate installed.
- Fixture bolted closed, flipped over and opened.
- Inner layer and midplanes covered with mica paper.
- Reaction mandrel blocks and base plate installed.
- Fixture bolted closed, end plates installed.
- Fixture moved into oven for reaction.
- Reaction includes steps at 210 C, 400 C and 640 C.

Impregnation:

- Fixture moved from oven to assembly table.
- Reaction top plate, form blocks, liner, mica, fiberglass removed.
- Lead extensions soldered to coil leads.
- Outer instrumentation trace installed, covered with fiberglass.
- Impregnation liner, form blocks and top plate installed.
- Fixture bolted closed, flipped over.
- Reaction mandrel blocks, base plate and mica paper removed.
- Inner instrumentation trace installed, covered with fiberglass.
- Impregnation mandrel blocks and base plate installed.
- Fixture bolted closed. End plates and lead seals installed.
- Fixture moved to vacuum tank for impregnation.
- Pump down, bake out.
- Impregnate with CTD101k.
- Cure includes steps at 110 C and 125 C.

Coil QA

- Coil QA
 - Electrical:
 - Resistance / RLQ
 - Coil
 - Voltage Taps
 - Heaters
 - Hipot
 - Coil to Heaters
 - Coil to End Shoe
 - Heaters to End Shoes
 - End Shoe to End Shoe
 - Impulse
 - Mechanical:
 - Coil Length
 - Coil Azimuthal Size

Coil CMM Measurements

	Coil			Coil Hipot Checks			
		Heater PHA01		Actual / Target			
Heater PHA01	1000 / 1000		Heater PHA02				
Heater PHA02	1000 / 1000			Heater PHB01			
Heater PHB01	1000 / 1000				Heater PHB02		
Heater PHB02	1000 / 1000					LE IL Endshoe	
LE IL Endshoe	500/500	500 / 500	500 / 500				RE IL Endshoe
LE OL Endshoe	500/500			500/500	500 / 500	500 / 500	
RE IL Endshoe	500/500	500/500	500 / 500				
RE OL Endshoe	500 / 500			500/500	500/500		500/500

LHQ Coil Fabrication & Testing

- Electrical tests of the LHQ practice coil were run at higher levels than normal for HQ in order to demonstrate the ability to meet CERN's more stringent requirements.
 - Hipot coil to quench heaters Passed at 5000 volts.
 - (Normal HQ test 1000 volts)
 - Coil Impulse test Passed at 3000 Volts.
 - (Normal HQ test 1000 Volts)
- Upcoming mirror test of LHQ coil will demonstrate HQ features not present in the LQ magnets.
 - Cable with core, braided insulation, stainless steel end parts.

High

Luminosity

Status

- Coil fabrication procedures:
 - SQXF traveler preparation underway (based on HQ).
 - Coil QA is in place, being reviewed for compliance with CERN requirements.
- Tooling fabrication:
 - SQXF Reaction Impregnation fixtures fabrication underway (FNAL).
 - First reaction set due early March.
 - First impregnation set due mid March.
 - Remaining sets by end of March.
 - SQXF Coil lifting fixtures fabrication underway (BNL).
 - Some parts received, remaining due by end of February.
 - SQXF Coil shipping fixtures fabrication underway (BNL).
 - Some parts received, remaining due early March.
 - Coil lead solder fixture fabrication underway (BNL)
 - Due mid March.
 - LQXF Reaction Impregnation fixtures design complete, drawings ready.
 - LQXF Coil lifting & shipping fixtures design complete, drawings ready.

Summary

- QXF tooling designs based on tooling used successfully for LQ and HQ.
- Procedures well established and documented.
- Facilities / Infrastructure in existence at multiple labs.
- SQXF tooling fabrication well underway.