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Introduction 

•  Parallelism was nearly dead in 20 years ago 
–  ages of Pentium (clusters rule HTC) 
– Moore’s law had been prevailed till 2005 
–  efficient memory hierarchy (cache)    

•  Parallelism is resurrected by a new hardware trend 
–  quantum leakage (hitting power-wall) 
– multi-cores, many-cores, SMX 
–  not a problem, but new opportunities ? 

•  How can we explore parallelism in HEP?   
–  requires evolution or revolution, and many challenges 
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One goal 
•  Research and develop a massively parallelized 

HEP simulation engine 

 
             LHC Run-I                     HighLumi-LHC + Pileups 
        Events over Grid, Tier-X       Challenges for HEP computing   

•  New programming models for HEP-HTC/HPC 
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Two-dimensional Game  
•  Two-fold problem 

 
•  Strategies: events      tasks 
–  track-level parallelism by R. Brun (vector) 
– decompose and regroup in a pipeline (ILP) 

maximize	
   minimize	
  

memory	
   locality	
   latency	
  

instruc0on	
   throughput	
   divergence	
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Concurrent Programming Model 
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•  Host (CPU) + Coprocessors (GPU, MIC) 
 

Vector	
  

Mul<-­‐Core	
  

Threading	
  

SIMD/SIMT	
  Data	
  Transfer	
   Load	
  Balance	
  	
  



GPU Prototype: Three Core Components 

•  Geometry 
–  detector 
– B-field 
–  transport 

•  Physics  
–  cross section 
–  final state 

•  Scheduler 
–  task stealing 
–  load balance 
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Bottom-up Approach  
•  Build a detector on CPU and relocated on GPU 
•  Ported Geant4 standard EM physics onto  

coprocessors and evaluate performance with a 
sequence of tasks 
– separated kernels by the particle type (e-, γ) 
– get the interaction length (cross section) 
– sorting (by logical volume) (not implemented) 
–  transportation 
– sorting (by the physics process) 
– post stepping actions and final state sampling 
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Physics Validation 
•  Compare simulated physics outputs (G. Lima)  
– device code (RED) vs. Geant4 (BLUE)  
– ex. Bremsstrahlung process (1 GeV e-)  
–  interaction length, energy loss, angular distribution of 

secondary photons, etc.  
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Performance Evaluation: GPU 
•  Hardware (host + device) 

 

•  Performance measurement  
–  (4096x32) tracks 
–  Gain = Time (1 CPU core)/Time (total GPU cores)             

Time = (data transfer + kernel execution) 
–  default <<< Block, Thread >>> organization       

M2090<<<32,128>>> and K20<<<26,192>>>  
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Host (CPU) Device (GPU) 

M2090 AMD Opertron™ 6134 
32 cores @ 2.4 GHz 

Nvidia M2090 (Fermi)     
512 cores @ 1.3 GHz  

K20 Intel® Xeon® E5-2620  
24 cores @ 2.0 GHz 

Nvidia K20 (Kepler)     
2496 cores @ 0.7GHz 



Performance: Realistic Simulation  

•  A simple calorimeter (a.k.a CMS Ecal) 
•  Tracking for one step: split kernels                     

(GPIL+sorting+DoIt) 

 

•  Optimization strategies 
–  kernel basis (high-level restructuring) 
–  component basis (low-level improvement by profilers) 

CPU	
  [ms]	
   GPU	
  [ms]	
   CPU/GPU	
  

AMD+M2090	
   748	
   37.8	
   19.8	
  

Intel®+K20M	
   571	
   30.4	
   18.7	
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Xeon Phi Performance 
•  Ported the GPU device codes to MIC  
•  Offload mode for different magnetic field integrators  
–  one step with the CMS magnetic field 
–  Parallel loop (map) 
•  openMP (omp parallel) 
•  TBB (parallel_for) 
•  CilkPlus (cilk_for) 

•  Performance measurement 
–  100K (random) tracks 
–  number of MIC threads = 236 
–  gain = time (1CPU core)/time (236 MIC cores) 
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Performance Results 

•  All programming models show similar performance 
results (no optimization for VPU/memory align) 
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Models	
   Alogorithm	
   CPU[ms]	
   MIC[ms]	
   CPU/MIC	
  

Classical	
  RK4	
   97.0	
   29.4	
   3.3	
  

openMP	
   FK	
  Felhberg	
   104.9	
   29.9	
   3.5	
  

Nystrom	
  RK4	
   49.0	
   23.7	
   2.1	
  

Classical	
  RK4	
   98.6	
   40.1	
   2.5	
  

TBB	
   FK	
  Felhberg	
   109.2	
   38.1	
   2.9	
  

Nystrom	
  RK4	
   50.6	
   29.0	
   1.8	
  

Classical	
  RK4	
   101.2	
   55.5	
   2.0	
  

CilkPlus	
   RK	
  Felhberg	
   106.4	
   51.4	
   2.3	
  

Nystrom	
  RK4	
   49.4	
   49.1	
   1.1	
  



No Free Lunch 
•  HEP detector simulation (Geant4) is a giant 
– complicated, object oriented 
– designed for efficient memory footprints  
–  real-life problems of natures 
–  random (ex. acceptance and rejection) 

•  Coprocessor architectures  
– hard to scale performance for conventional HEP 

detector simulation - almost impossible (?)  
–  fine tuning is critical, but how much (good for 

sequential computing anyway)  
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Many Challenges 
•  Structural programming models for VPU/SMX 
– architecture, compiler, algorithm are all matters 
– purely SIMD/SIMT driven (memory, instruction 

throughput) 
– generic codes for scalar, vector, coprocessors 

(platform independent approach - template) 
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Top-down 
•  Build a framework and add fully optimize and 

vectorized components  
•  Evaluate performance for each additional 

component exclusively  
– understanding impacts of additions/substitutions 
–  identifying and prioritizing for optimization 

•  Interface for different frameworks 
– ported Geant4 code (existing CUDAized codes) 
– vectorized codes (geometry, navigation, physics) 
–  tabulated physics used in the vector prototype 
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Snapshot of Tabulated Physics 

•  Cross section (16 MB)   
– σ(Z,A,E) per element for major pid and processes 

•  Interaction length for a composite material 
– 1/λ = NA ρ Σ wi σi 

•  Energy loss: dE/dx per element 
– dE/dx (material) = ρ Σ (wi/ρi) (dE/dx)i 

•  Final state sampling (1.2 GB) and timing (20MB) 
– multiple scattering: angle, length, etc.  
– secondary particles: N(10) samplings per energy bin  

GPU	
  Prototype	
  -­‐	
  S.Y.	
  Jun	
  



Comparison to Geant4  
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•  Tabulated VP physics vs. cmsExp + Geant4 10.0 
•  Ex: e- cross section (bremsstrahlung) and dE/dx 

(ionization) for PbWO4   



CUDAzing and Vectorizing Physics 
•  Standard EM physics processes/models 
– start with Bremsstrahlung (e-) and Compton(γ)  
– compatible with Geant4, the vector prototype and the 

coprocessor prototype (GPU/MIC) 
– evaluate performance and validate quality of physics  

•  Abstraction and implement the rest of e/γ physics 
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Multi-dimensional Considerations   
•  Global memory access 
•  Data structure 
•  Floating point consideration 
•  Random number generation 
•  Understanding performance 
•  Efficient sorting 
•  Multiple streams and concurrent kernels 
•  Validation  
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Plan 
•  Integration with the current vector prototype  
–  demonstrate a working example with the connector  
–  adopt/develop vectorized components (geometry, 

transport, physics)   
•  Redesign the prototype optimally for SIMT/SIMD 
– minimize branches (granulize tasks) 
– maximize locality (reuse data)  
–  efficient data structure, algorithms and kernel managers     

for leveraging parallelism/vectorization 
•  Early considerations for hybrid computing models   
– OpenCL, TBB, etc.      
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More on Philippe’s Talk 
•  Connector to the vector prototype 
•  2014 milestones from the January VP-GPU meeting 
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Krzysztof took this picture!	




