
GPU Prototype

ASCR-HEP @Fermilab
Feb. 5, 2014

P. Canal, D. Elvira, S.Y. Jun, G. Lima

Introduction

•  Parallelism was nearly dead in 20 years ago
–  ages of Pentium (clusters rule HTC)
– Moore’s law had been prevailed till 2005
–  efficient memory hierarchy (cache)

•  Parallelism is resurrected by a new hardware trend
–  quantum leakage (hitting power-wall)
– multi-cores, many-cores, SMX
–  not a problem, but new opportunities ?

•  How can we explore parallelism in HEP?
–  requires evolution or revolution, and many challenges

GPU	
 Prototype	
 -­‐	
 S.Y.	
 Jun	

One goal
•  Research and develop a massively parallelized

HEP simulation engine

 LHC Run-I HighLumi-LHC + Pileups
 Events over Grid, Tier-X Challenges for HEP computing

•  New programming models for HEP-HTC/HPC
GPU	
 Prototype	
 -­‐	
 S.Y.	
 Jun	

Two-dimensional Game
•  Two-fold problem

•  Strategies: events tasks
–  track-level parallelism by R. Brun (vector)
– decompose and regroup in a pipeline (ILP)

maximize	
 minimize	

memory	
 locality	
 latency	

instruc0on	
 throughput	
 divergence	

GPU	
 Prototype	
 -­‐	
 S.Y.	
 Jun	

Concurrent Programming Model

GPU	
 Prototype	
 -­‐	
 S.Y.	
 Jun	

•  Host (CPU) + Coprocessors (GPU, MIC)

Vector	

Mul<-­‐Core	

Threading	

SIMD/SIMT	
 Data	
 Transfer	
 Load	
 Balance	
 	

GPU Prototype: Three Core Components

•  Geometry
–  detector
– B-field
–  transport

•  Physics
–  cross section
–  final state

•  Scheduler
–  task stealing
–  load balance

GPU	
 Prototype	
 -­‐	
 S.Y.	
 Jun	

Bottom-up Approach
•  Build a detector on CPU and relocated on GPU
•  Ported Geant4 standard EM physics onto

coprocessors and evaluate performance with a
sequence of tasks
– separated kernels by the particle type (e-, γ)
– get the interaction length (cross section)
– sorting (by logical volume) (not implemented)
–  transportation
– sorting (by the physics process)
– post stepping actions and final state sampling

GPU	
 Prototype	
 -­‐	
 S.Y.	
 Jun	

Physics Validation
•  Compare simulated physics outputs (G. Lima)
– device code (RED) vs. Geant4 (BLUE)
– ex. Bremsstrahlung process (1 GeV e-)
–  interaction length, energy loss, angular distribution of

secondary photons, etc.

GPU	
 Prototype	
 -­‐	
 S.Y.	
 Jun	

Performance Evaluation: GPU
•  Hardware (host + device)

•  Performance measurement
–  (4096x32) tracks
–  Gain = Time (1 CPU core)/Time (total GPU cores)

Time = (data transfer + kernel execution)
–  default <<< Block, Thread >>> organization

M2090<<<32,128>>> and K20<<<26,192>>>

	
 	
 	
 GPU	
 Prototype	
 -­‐	
 S.Y.	
 Jun	

Host (CPU) Device (GPU)

M2090 AMD Opertron™ 6134
32 cores @ 2.4 GHz

Nvidia M2090 (Fermi)
512 cores @ 1.3 GHz

K20 Intel® Xeon® E5-2620
24 cores @ 2.0 GHz

Nvidia K20 (Kepler)
2496 cores @ 0.7GHz

Performance: Realistic Simulation

•  A simple calorimeter (a.k.a CMS Ecal)
•  Tracking for one step: split kernels

(GPIL+sorting+DoIt)

•  Optimization strategies
–  kernel basis (high-level restructuring)
–  component basis (low-level improvement by profilers)

CPU	
 [ms]	
 GPU	
 [ms]	
 CPU/GPU	

AMD+M2090	
 748	
 37.8	
 19.8	

Intel®+K20M	
 571	
 30.4	
 18.7	

GPU	
 Prototype	
 -­‐	
 S.Y.	
 Jun	

Xeon Phi Performance
•  Ported the GPU device codes to MIC
•  Offload mode for different magnetic field integrators
–  one step with the CMS magnetic field
–  Parallel loop (map)
•  openMP (omp parallel)
•  TBB (parallel_for)
•  CilkPlus (cilk_for)

•  Performance measurement
–  100K (random) tracks
–  number of MIC threads = 236
–  gain = time (1CPU core)/time (236 MIC cores)

GPU	
 Prototype	
 -­‐	
 S.Y.	
 Jun	

Performance Results

•  All programming models show similar performance
results (no optimization for VPU/memory align)

GPU	
 Prototype	
 -­‐	
 S.Y.	
 Jun	

Models	
 Alogorithm	
 CPU[ms]	
 MIC[ms]	
 CPU/MIC	

Classical	
 RK4	
 97.0	
 29.4	
 3.3	

openMP	
 FK	
 Felhberg	
 104.9	
 29.9	
 3.5	

Nystrom	
 RK4	
 49.0	
 23.7	
 2.1	

Classical	
 RK4	
 98.6	
 40.1	
 2.5	

TBB	
 FK	
 Felhberg	
 109.2	
 38.1	
 2.9	

Nystrom	
 RK4	
 50.6	
 29.0	
 1.8	

Classical	
 RK4	
 101.2	
 55.5	
 2.0	

CilkPlus	
 RK	
 Felhberg	
 106.4	
 51.4	
 2.3	

Nystrom	
 RK4	
 49.4	
 49.1	
 1.1	

No Free Lunch
•  HEP detector simulation (Geant4) is a giant
– complicated, object oriented
– designed for efficient memory footprints
–  real-life problems of natures
–  random (ex. acceptance and rejection)

•  Coprocessor architectures
– hard to scale performance for conventional HEP

detector simulation - almost impossible (?)
–  fine tuning is critical, but how much (good for

sequential computing anyway)
GPU	
 Prototype	
 -­‐	
 S.Y.	
 Jun	

Many Challenges
•  Structural programming models for VPU/SMX
– architecture, compiler, algorithm are all matters
– purely SIMD/SIMT driven (memory, instruction

throughput)
– generic codes for scalar, vector, coprocessors

(platform independent approach - template)

GPU	
 Prototype	
 -­‐	
 S.Y.	
 Jun	

Top-down
•  Build a framework and add fully optimize and

vectorized components
•  Evaluate performance for each additional

component exclusively
– understanding impacts of additions/substitutions
–  identifying and prioritizing for optimization

•  Interface for different frameworks
– ported Geant4 code (existing CUDAized codes)
– vectorized codes (geometry, navigation, physics)
–  tabulated physics used in the vector prototype

GPU	
 Prototype	
 -­‐	
 S.Y.	
 Jun	

Snapshot of Tabulated Physics

•  Cross section (16 MB)
– σ(Z,A,E) per element for major pid and processes

•  Interaction length for a composite material
– 1/λ = NA ρ Σ wi σi

•  Energy loss: dE/dx per element
– dE/dx (material) = ρ Σ (wi/ρi) (dE/dx)i

•  Final state sampling (1.2 GB) and timing (20MB)
– multiple scattering: angle, length, etc.
– secondary particles: N(10) samplings per energy bin

GPU	
 Prototype	
 -­‐	
 S.Y.	
 Jun	

Comparison to Geant4

GPU	
 Prototype	
 -­‐	
 S.Y.	
 Jun	

•  Tabulated VP physics vs. cmsExp + Geant4 10.0
•  Ex: e- cross section (bremsstrahlung) and dE/dx

(ionization) for PbWO4

CUDAzing and Vectorizing Physics
•  Standard EM physics processes/models
– start with Bremsstrahlung (e-) and Compton(γ)
– compatible with Geant4, the vector prototype and the

coprocessor prototype (GPU/MIC)
– evaluate performance and validate quality of physics

•  Abstraction and implement the rest of e/γ physics

GPU	
 Prototype	
 -­‐	
 S.Y.	
 Jun	

Multi-dimensional Considerations
•  Global memory access
•  Data structure
•  Floating point consideration
•  Random number generation
•  Understanding performance
•  Efficient sorting
•  Multiple streams and concurrent kernels
•  Validation

GPU	
 Prototype	
 -­‐	
 S.Y.	
 Jun	

Plan
•  Integration with the current vector prototype
–  demonstrate a working example with the connector
–  adopt/develop vectorized components (geometry,

transport, physics)
•  Redesign the prototype optimally for SIMT/SIMD
– minimize branches (granulize tasks)
– maximize locality (reuse data)
–  efficient data structure, algorithms and kernel managers

for leveraging parallelism/vectorization
•  Early considerations for hybrid computing models
– OpenCL, TBB, etc.

GPU	
 Prototype	
 -­‐	
 S.Y.	
 Jun	

More on Philippe’s Talk
•  Connector to the vector prototype
•  2014 milestones from the January VP-GPU meeting

GPU	
 Prototype	
 -­‐	
 S.Y.	
 Jun	

Krzysztof took this picture!	

