Geant4 Version 10
Status and outlook

A. Dottl for the Geant4 collaboration
HEP/ASCR Meeting; 5t February 2014

Introduction

el AP

T AN

* Event level parallelism via multi-threading (POSIX based)

Bullt on top of experience of G4AMT prototypes

Main design driving goal: minimize user-code changes

ntegrated into Version 0.0 codebase

e Public release
e MT code e All functionalities

integrated into borted to MT

G4 10
GAMT 9.5 G4 G4 10.0 .
GAMT 9.4. (2011)) = 5519) 10.0.beta (Dec. 2013) (ggﬁi)

Proof of principle * APl re-design e Further
* |dentify objects to * Example migration Refinements

be shared * Further testing * Focus on further
* First testing * First optimizations performance

improvements

Multi-threading master/worker model

Geometry and

Per-thread

Inlt

End Local
Run

Physics
configuration

ez

Per-thread
Init

Event
Loop

End Local
Run

Merge in Global Run

Per-thread
Init

Event
Loop

End Local
Run

Per-event RNS seeds
pre-prepared:
guarantees
reproducibility

Threads compete for next
“bunch” of events. Optimal
bunch size Is a parameter to
minimize locking

Command line scoring and G4
histo tools automatically perform
reductions at the end of the job.

(%)

Thread-safety in Version 10.0

1 AL

* Design: lock-free code during event-loop
* Thread-safety implemented via Thread Local Storage
* “Split-class” mechanism: reduce memory consumption
- Read-only part of most memory consuming objects shared between

thread: geometry, (EM) physics tables
- Rest I1s thread-private

GeometryObject

- shapeSize
- shapePosition
- TLS reference

SplitClass Thread1 SplitClass Thread2 SplitClass Thread3
- sensitiveDetector - sensitiveDetector - sensitiveDetector

User-feedback

1 A

*Very strong interest from user community: 30 threads in new
dedicated user-forum (not only HEP)

* CMS: interest In integration with TBB-based experimental
framework. First simple TBB-based example provided (examples/
extended/parallel/TBB)

* ATLAS: Interest in evaluation MT in ISF (Integrated Simulation

Framework) mixing different flavors of simulation (e.g. fast and
full) and possibly In parallel

* ALICE: strong interest running iIn MT already during this year

*Uni Manchester: use of G4 on Xeon Phi for imaging and
treatment planning

General considerations

1 A

* Fully reproducible: given an event and its initial seed the RNG history is
iIndependent of the number of threads and order in which these are
simulated

e Corollary |: given the seeds, sequential and MT builds are equivalent
e Corollary 2: being able to reproduce a single event in a dedicated job (l.e. crashes)

*MT functionality introduces minimal overhead (~ %) w.rt. sequential
*Very good linear speedup up to very large number of threads O(100)

* Good memory reduction: only 30-50MB/thread (depends on application)
* Hyper-threading adds additional +20% throughput

* Working out-of-the-box with success on different architectures x36,
ARM, MIC, £ Atom, REIBM Bluegene/Q

Results

Events/minute

Events/minute

[
(=
o

800

700}

200}
100}

& 8
© ©

N
o
o

Throughput

eo—e Intel Xeon Phi|

0 50 100 150 200

Number Threads

Throughput_

12 Physical cores

o—o Intel Xeon X5650 |

5 10 15 20 25
Number Threads

Events/minute

Memory usage (MB)

4500 r .
a=3801+0.03456
4000 b=2114%2.013
chi2/ndof = 17.5(1697/97)
3500
3000
2500
2000
1500 Baseline 200MB
Additional 40MB/thread
1000
500
o 1 1 1 1
0 20 40 Nuffber of tBPeads 100 120
Throughput

e—e Cortex A15 |

1 2 3 a
Number Threads

Cross-comparing architectures

el AL

Throughput | ' P M\
400 BN Evts/min/cpu/GHz lg :

BN Evts/min/cpu/GHz/Watt -see notes- * Throughput normalized per GHz
350 and “socket” (or node / card)

17
* Not a measure of the absolute

300

s performance of a system

* Also reported Throughput/Watt:
not realistic (mainly not counting

250¢ L

(4]

server, very rough!) only to give an

200} ¢ 4 N

-

Evts/min/cp1/GHz
Evts/m n/cpu/GHz ' Watt

idea of what we are talking about

* What is the best “metrics’ to
compare different architectures?

w

Absolute performances:

====== Max Events/min/cpu, =======

154.4619 Intel Xeon 5520@2.27GHz

319.7392 Intel Xeon_X5650@2.67GHz

534.6305 Intel Xeon E5-2695 v2@2.40GHz
73.8040 Intel "Atom C2730@1.7GHz

46.8705 Exynos, 5410 Octa Cortex—A15@l.6GHz
119.2088 BlueGene/Q@1l.6GHz

334.4548 ' Intel Xeon Phi 7120P@1.238GHz

=~ ~
¥ 3
g o
7
& 4
5]
(@] Q

A
(*)Mira nominal consumption/number of nodes

(**) Measured for a ODROID-XU+E evaluation board R —) —

(***)Power consumption measured via “Intel Xeon Phi Coprocessor Status Panel”

All other are max TDP specifications 10

Comparison of compilation options/libraries

G4 Options

Static Libs

Shared Libs

+20%

+

+10%

Default

11

{squ paieys ‘uAp jeqolb :japow S1L ‘L' b-226

sqi] paieys ‘uAp |eqo|b :japow S11 ‘I1°8"p-206

sqI| J13e3S

{sau aneis

{san oneis

{san aneis

‘>9X@ |e20| ;]apow S1L ‘I'g'p-226
‘uAp |ed0] :|]apow S11 ‘T'8"p-226
‘uAp |eqojb :jspow Ss11 ‘I°8"p-236

‘3S0EYIAPD OU ZO- /M ‘T'8"p-206

1sq1] paieys ‘sbeypyo ou Zo- /M ‘I'8'p-206

__ma__ mels

‘shepypo ou Zo- /M ‘T°g'p-236

Compilers

GCC 4.4.7
GCC 4.8.1

45|

ICC 14.0.1
CLANG 3.3

g

uIw/sing

G4 options

* Using to static libraries

shows a 20% gain In

performances

{sau oneis

1san aneis

{sqi oneis

{squ aneis

15491l >1els

15491l >1els

1541l 2neis

{sau oneis

1sql 2neis

1s4qn 21ies

1 sqtl 21els

=
m

* Turning off some G4

options for

productions also

additional brings 6-7%

‘€0- /m ‘g g-Buepd

‘20- /m ‘g g-Bue)d
‘09d £0- /M ‘T°0"PT-221
‘0odl £0- /M ‘T°0"HT-231
‘€O- /M ‘T'0"T-221

‘T0- /M ‘T'0"YT-221
‘dsejo- /m ‘1°8'p-226
‘€O- /M ‘T°8"'p-206

‘20- /M ‘1°8'p-226

‘20- 6- /m ‘L b p-206

20- /M ‘L'p p-20b

1sq1] paieys ‘zo- /m ‘g g-buepd
15911 pa4eys ‘zo- /M ‘T°0"vT-221
1sqll paieys ‘Zo- /m ‘1°g'p-226
1s4q1] paieys ‘zo- b- /m ‘L v p-226

1sq1 paieys ‘zo- /m ‘L' p-206

Highest priority

1 A

* Further reduce memory consumption. Rule of the thumb: fit
complex simulations w/ O(100) threads in O(GB) memory
- e.g. typical computing power of accelerators

*In our experience: minimize memory usage can sometime conflict
with other performance considerations (e.g. reduce memory
“churn’ via caching need special attention for thread-safety)

* Most memory consuming objects: geometry and EM physics

- Efficient memory reduction already achieved in 10.0.beta
- Next: need to concentrate on Hadronics physics (especially: cross-
sections, specific models with large not-shared tables -BIC-)

13

Task-based model: CMS

N

* Current design assumes thread and worker are same thing...

*Not always easy to integrate with external frameworks based on task

concept (no direct control of threads).

- Strong interest from CMS on Intel's TBB, ATLAS is also considering it (at least as a
level of study)

- Important requirement: assume we have a pool of tasks of different nature
(generation, simulation, digitization, reco, I/O) to be executed by a set of threads.
VWe want to “occupy” only a fraction of the threads with simulation task at any
given moment. This requires “migration” of simulation from a thread to another
one (“‘clean up” is the difficult part)

*Introduced concept of “workspace”.

- Encapsulate all thread/task private data in resource that can be exclusively

requested, used and released
- Currently only limrted functionality for geometry module

14

“Splitting” of events: ATLAS

* ATLAS framework can already implement a simple sub-event

parallelism:

- Get a single generator event (hundreds primaries) and divide it (e.g. by
region)

- Each “piece’ becomes a G4Event

- Hand over to G4 each separately. Effectively split a huge HEP event in
many G4Events

* Possible to use MT to parallelize

- Once framework Is made thread-safe: work ongoing

o1 AL
DN

15

Heterogeneous parallelism: MPI based G4AMT

 MPI based parallelism avallable in Geant4

e MPI works together with MT
e Probably most interesting for non-HEP domains and/or SuperComputers

Dose Distnbation Dose Distribution

X1cm)

Example:
4 MPI jobs s i ot il NI 2
2 threads/job IR i s
MPI job owns histogram Eo

Dose Cistnibastion Dose Drstnibastion

X 1em)

Next Step: e o e
Host + MIC simulation PO O 1 b AR e
Based on MP!

2014+ simplified work-plan

1

* We already have intra-node and intra-core parallelism efficiently in place

- Algorithm implementations are the place to look to get more performance
(examples: see G4em review from Krzystof and Had XS caching from Pedro)

* From profiling analysis:

- G4 profile is very flat: top 5 functions take: 3%, 2%, 27, 196, 1%

- For HEP use cases CPU-time i1s spent equally in geometry and physics (~30% each)
* From profiling we can see what to improve:

- Complex algorithms: often they are “plain translations of complex physics
formulas; not CPU efficient (but easier to read)

- Review use of (large) arrays and caching of numbers (especially true for MT)

- Introduce modern parallel RNG engine (RNG takes ~19%) and use of RNG vector
interfaces

- Similarly look at other "mathematical” aspects: 3- and 4-vectors

- Switching to fast G4Pow and G4lLog brought several % improvements

17

Gooda Example (ParFullCMS)

o1 AL
Fhem M

Reports

reports/Sample

reports/G4MT-nev

reports/G4MT-old

reports /G4AMT-new Hotspots

= <7 Cycles Samples

o
Proce‘>5 »

V4
ParFullcms
aggregated_kernel_object
vm1inux
puppet
perf
sshd
kworker/9:0
khugepaged
kworker/7:0
kworker/0:0
kworker/14:2

[F bk+hraadd

= < Cycles Samples

fu r“,_\—’-’\0\‘\

G/

G4rhysicsvector: :value(do..
G4elasticHadrNucleusHE: :H..
G4Navigator::LocateGlobal..
G4rolyconeSide: :DistanceA..
G4steppingManager: :Define..
G4CrossSectionDataStore: :..
CLHEP: :MTwistEngine: :flat.
G4ClassicalRk4: :DumbStepp..
G4Navigator: :ComputeStep (..

G4voxelNavigation: :Comput..

249801
175220
190355
134038
131792
121696
107107

82552
110755
113825

modu'® Pt

(3%)
(2%)
(2%)
(1%)
(1%)
(1%)
(1%)
(1%)
(1%)
(1%

183440
110935
141634
80485
89575
78271
60097
37933
76064
80083

8245843 (100%) 5703358 (69%) 3905966
74 74 %4

Enter search term

ore e stV ared any
unha“ed’c 005 el Srruc A

b/3245843 (100%) t/5703358 (69%) b/3905966 h/4766639

8229714 (99%) 5654865 (68%) 3900553 4757241

91525 (1%) 111330 (121%) 17110 28074

4869 (0%) 40659 (835%) 1492 4067

1431 (0%) 855 (59%) 556 723

1401 (0%) 979 (69%) 563 881

934 (0%) 460 (49%) 873 1107

358 0%) 248 (69%) 87 90

308 (0%) 190 (61%) 71 113

308 (0%) 234 (75%) 56 90

298 (0%) 190 (63%) 48 83

278 (0%) 285 (102%) 56 105

FER [dical 234 CR7¥N AN 112

Enter search term
_oyel® & cion 4 a0l Lura® '
exired ta:“\stcu o ‘,:e 0ad yaren® ﬁnstructw = band“«dt\\)awra(:ranchfmisvfed‘cﬁ core-~ soufces’Sa structw“ 2‘te“d,gcepﬁo mnd““q

¢4766639 Q}/MSBZ (33%) Q}SBS?IB (56%) @1»8/0157 (0%) @»5/22052 (6%) Qéougs (2%) Qt;724700 (20%) Q:}UZS (0%)
(73%) 81361 96333 157004 (62%) 102099 (40%) 3478 (1%) 16477 (6%) 72405 (28%) 606 (0%)
(63%) 119668 177152 2405 (1%) 3021 (1%) 70 (0%) 884 (0%) 467 (0%) 123127 (70%) 1660 (0%)
(74%) 59378 74117 144841 (76%) 101920 (53%) 1958 (1%) 9192 (4%) 7890 (4%) 25192 (13%) 586 (0%)
(60%) 99852 125190 14410 (10%) 10643 (7%) 1153 (0%) 6291 (4%) 20 (0%) 58860 (43%) 636 (0%)
(67%) 79845 87085 75913 (57%) 68719 (52%) 358 (0%) 7225 (5%) 3597 (2%) 15542 (11%) 407 (0%)
(64%) 73528 96325 73975 (60%) 36391 (29%) 258 (0%) 4541 (3%) 21048 (17%) 13356 (10%) 318 (0%)
(56%) 89551 93810 30359 (28%) 41231 (38%) 179 (0%) 7622 (7%) 15185 (14%) 447 (0%)
(45%) 113510 131667 2723 (3%) 9948 (12%) 30 (0%) 2335 (2%) 6141 (7%) 17739 (21%) 199 (0%)
(68%) 52331 68123 28749 (25%) 103898 (93%) 626 (0%) 9063 (8%) 298 (0%) 11041 (9%) 417 (0%)
(70%) 50370 58626 62875 (55%) 55998 (49%) 745 (0%) 8238 (7%) 4074 (3%) 11538 (10%) 398 (0%)

18

Where do we spend time?

8229714 (99%)
/data/adotti/new/11b64/1ibGdprocesses. so 2862844 (34%) P hysics
/data/adotti/new/11b64/11bG4geometry.so 2488445 (30%) Geometry
/11b64/1ibm-2.12.s0 879001 (10%)
/data/adotti/new/11b64/1ibG4tracking.so 487678 (5%) B-Field
/data/adotti/new/11b64/1ibG4clhep.so 307310 (3%)
/data/adotti/new/11b64/1ibG4global.so 355528 (4%)
/data/adotti/new/1ib64/1ibG4track.so 299122 (3%)
/da
Qv/ Va
G4rhysicsvector: :value(double, unsigned long&) const 249801
G4elasticHadrNucleusHE: :HadrNucDifferCrsec(int, int, double) 175220
G4Navigator: :LocateGlobalPointAndSetup (CLHEP: :Hep3vector const&, CL.. 190355
G4rolyconeSide: :DistanceAway (CLHEP: :Hep3Vector const&, bool, double.. 134038
G4ASteppingManager: :DefinePhysicalStepLength() 131792
G4CrossSectionDataStore: :GetCrossSection(G4DynamicParticle const¥, .. 121696
CLHEP: :MTwistEngine: :flat() 107107
G4ClassicalRk4: :pumbStepper(double const*, double const®*, double, d.. 82552
G4Navigator: :ComputeStep (CLHEP: :Hep3vector const&, CLHEP: :Hep3vecto.. 110755
G4voxelNavigation: :ComputeStep(CLHEP: :Hep3Vector const&, CLHEP: :Hep.. 113825
G4Mag_UsualeqgRhs: :EvaluaterRhsGivenB(double const*, double const®*, d.. 109085
G4ASteppingManager: :Stepping() 102486
GATransportation: :AlongStepGetPhysicalInteractionLength(G4Track con.. 99485
G4rolyPhiFace: :InsideEdges (double, double, double®, G4PolyPhiFaceve.. 81826

8245843 (100%)

(3%)
(2%)
(2%)
(1%)
(1%)
(1%)
(1%)
(1%)
(1%)
(1%)
(1%)
(1%)
(1%)

(0%)

o1 AL
DN

Specific HAD o

EM physics tables
Geometry navigation
Specific geometry
Navigation / o interrogation
HAD o

RNG

B-Field

Geometry navigation
Geometry navigation
B-Field

Geometry navigation

Geometry navigation
Specific geometry

19

Example: our opportunities in the two top functions

Din2 = Din2 + N2p*BinCoeff*
(C1l/explp*std: :exp(-theQ2/4/explp)-
C2/exp2p*std: :exp(-theQ2/4/exp2p)+

C3/exp3p*std: :exp(-theQ2/4/exp3p));

Hadronic cross-sections (2%): two-level loop containing three std::exp and

divisions between doubles

519
520

I,
1
:

521
522

i

- 523
e 524
525 }

y = datavector[lastIdx];
} else {
lastIdx = FindBin(theEnergy, lastIdx);
y = Interpolation(lastIdx, theEnergy);
}
return y;

EM tables (3%): search in large array resulting in low cache efficiency

20

Benefits of MT developments for sequential code

1 A

DM

Ratio - SimplifiedCalo higgs.FTFP_BERT.1400.4

| | | | | | | | | | I | | | | [[

14— + AMD Opteron 6128 @2.00 GHz | _

CPU Time Ratio <9.X.Y/9.5>

06 e 0 0 e = e e —

| I l l | | | | | | I I l | | | |
56 5005 o3815,0:80 B0 B 8 R0 e R Lo B

Geant4 Version

Very important lesson learnt this year: improvements in M1 has
given benefits also to sequential users!

21

Conclusions

1

* Geant4 version |0 is the first large scale HEP software to massively

employ parallelism through multithreading

* Thread-safe code Is the most important precondition for parallel
software: G4 code Is now fully thread-safe

* Opportunities exists to speedup simulation (e.g. 20% from static libs)
without need to modify code

*We have seen clear trend in compiler generations in producing more efficient code.
What else can we use better (e.g. PGO, auto-vectorization,...)?

*Large core-count and/or low-power consumption archrtectures can be
used with HEP typical workloads

* Physics performance of G4 Is demonstrated (e.g. Higgs discovery, treatment
blanning): iImproving the speed of physics algorithm would give greater

benefit.

22

\ /

G4 on MIC

N

* Cross-compllation was relatively straightforward:
* Adding -mmic to compilation flags via CMake

*Modified couple of files implementing GNU specific pragmas
* fwo ways of working:

- Offload work to the card (via #pragma)

- Native mode compile full application, start via ssh

* Only second option used so far: particularly attractive combining
with MPI since minimizes data traffic over PCle

- Coordinate same program on host and card
- Checkpointing successfully used to substantially speedup initialization - from

O(min) down to O(sec)
* Limrtation was memory usage: only with top of the line MIC model
can use all 244 threads

24

Thread Local Storage

[ad_|

Speedup

10% critical
9.0000

8.0000
7.0000

6.0000

5.0000

4.0000

3.0000
2.0000

1.0000

0.0000

N threads

NB: results obtained on toy application, not real G4

 Fach (parallel) program has

sequential components

e Protect access to
concurrent resources

* Simplest solution: use mutex/lock

e TLS: each thread has its own
object (no need to lock)

* Supported by all modern
compilers

 Challenge: only simple data types
for static/global variables can be
made TLS

* Warning: hidden locks are
important too (e.g. operator

new, use of std: :strstream)

Tk M\

25

MT libs Vs SEQ libs

I l‘vvFVl W I

m

: : : : ST A : : : - : : : :

B o ou e e e e e S S e O S T T
. . . - - P . . . - . . . P
: : : AT R R : : : s s 3 : : : :

Ll :
\ :
n : : : A : : A : : o
> - - : 8 ®» 8 ® ® 9 s H » > 8 8 ® e 9 s - - *
w 00321
v E . . - . M . e ® e ® e e = . M e e

0.03

0.028

0.026 |-
0.028] SO O OO0 0 18 8 S R O 00 18 1 OO R O O
E —&— 10.0.beta-cand02

0.022§— ---------------- ----------- e 10.0.beta-cand02-MT
f L % Test-beam DATA (normalized) 5 P

0.02 A S N U A I S I I

cbeam o~ _ v\

Comparing with sequential

ol A
P b M\
Speedup Efficiency - 50 GeV
o T -
Q = 1 <
% 108 - I G4V1O()_E -
@ 106 L
W = >
E) 1.04 :_ .. LCLl’
- . wn
E 1 02 ?1=SequentlaI ... \é,
— D
1 e =
a - =
(_/) 0 98 __A &)
- -
s = &
S 096 z
b . —
g 0.94 - s
092 £
- L)
09 =
N Care
| thread => |0 threads =>

Overhead for MT
Very small CPU penalty
~ 1%

50% memory wirt.
|0 sequential instances

27

Hadronic memory usage

1 A

* The hadronics most memory hungry (5MB) hot-spot i1s BIC
model (even when not used). Some rework needed

* [he second Hadronics components using more memory are
cross=-sections (2.2MB) stored in G4CrossSectionDataStore

* Models/processes account for about |MB of memory

* [t s realistic to reduce memory footprint for Hadronics of a
factor 2

* Note: other models have a completely different profile

e HP models: currently each thread load all HP tables, testl | for HP uses
several GB of memory. No work on this done yet
e Requires strategy for sharing database files

28

