
Geant4 Version 10	

Status and outlook

A. Dotti for the Geant4 collaboration	

HEP/ASCR Meeting; 5th February 2014

Status: Geant4 Version 10 (6 December 2013)

Introduction

•Event level parallelism via multi-threading (POSIX based)	

•Built on top of experience of G4MT prototypes	

•Main design driving goal: minimize user-code changes	

•Integrated into Version 10.0 codebase

!3

G4MT 9.4. (2011) G4MT 9.5
(2012)

G4
10.0.beta

G4 10.0
(Dec. 2013)

G4 10
series

(2014+)

•  Proof of principle!
•  Identify objects to

be shared!
•  First testing!

•  MT code
integrated into
G4!

•  API re-design!
•  Example migration!
•  Further testing!
•  First optimizations!

•  Public release!
•  All functionalities

ported to MT!

•  Further
Refinements!

•  Focus on further
performance
improvements!

Multi-threading master/worker model

!4

24

Geometry and
Physics

configuration

0 1 2 3 4 N

Per-thread
Init

Per-thread
Init

Per-thread
Init

5 …

Event
Loop

Event
Loop

Event
Loop

End Local
Run

End Local
Run

End Local
Run

Merge in Global Run

Per-event seeds pre-
prepared in a “queue”

Threads compete for next
event to be processes (new
in ref-08)

Command line scoring and
G4tools automatically merge
results from threads

Per-event RNS seeds	

pre-prepared:	

guarantees	

reproducibility

Threads compete for next
“bunch” of events. Optimal
bunch size is a parameter to
minimize locking

Command line scoring and G4
histo tools automatically perform
reductions at the end of the job.	

Thread-safety in Version 10.0

•Design: lock-free code during event-loop	

•Thread-safety implemented via Thread Local Storage
•“Split-class” mechanism: reduce memory consumption	

- Read-only part of most memory consuming objects shared between
thread: geometry, (EM) physics tables	

- Rest is thread-private	

!

!

!5

GeometryObject

- shapeSize
- shapePosition
- sensitiveDetector

GeometryObject

- shapeSize
- shapePosition
- TLS reference

SplitClass Thread1
- sensitiveDetector

SplitClass Thread2
- sensitiveDetector

SplitClass Thread3
- sensitiveDetector

User-feedback

•Very strong interest from user community: 30 threads in new
dedicated user-forum (not only HEP)	

•CMS: interest in integration with TBB-based experimental
framework. First simple TBB-based example provided (examples/
extended/parallel/TBB)	

•ATLAS: interest in evaluation MT in ISF (Integrated Simulation
Framework) mixing different flavors of simulation (e.g. fast and
full) and possibly in parallel	

•ALICE: strong interest running in MT already during this year	

•Uni Manchester : use of G4 on Xeon Phi for imaging and
treatment planning

!6

Results

General considerations

•Fully reproducible: given an event and its initial seed the RNG history is
independent of the number of threads and order in which these are
simulated	

•Corollary 1: given the seeds, sequential and MT builds are equivalent	

•Corollary 2: being able to reproduce a single event in a dedicated job (i.e. crashes)	

•MT functionality introduces minimal overhead (~1%) w.r.t. sequential	

•Very good linear speedup up to very large number of threads O(100)	

•Good memory reduction: only 30-50MB/thread (depends on application)	

•Hyper-threading adds additional +20% throughput	

•Working out-of-the-box with success on different architectures x86,
ARM, MIC, Atom, IBM Bluegene/Q

!8

Results

!9

Number of threads

M
em

or
y

us
ag

e
(M

B)

Baseline 200MB	

Additional 40MB/thread

61 Physical cores

12 Physical cores

Absolute performances:	

====== Max Events/min/cpu =======
154.4619 Intel Xeon L5520@2.27GHz
319.7392 Intel Xeon X5650@2.67GHz
534.6305 Intel Xeon E5-2695 v2@2.40GHz
73.8040 Intel Atom C2730@1.7GHz
46.8705 Exynos 5410 Octa Cortex-A15@1.6GHz
119.2088 BlueGene/Q@1.6GHz
334.4548 Intel Xeon Phi 7120P@1.238GHz

Cross-comparing architectures

• Throughput normalized per GHz
and “socket” (or node / card)	

• Not a measure of the absolute
performance of a system	

• Also reported Throughput/Watt:
not realistic (mainly not counting
server, very rough!) only to give an
idea of what we are talking about	

• What is the best “metrics” to
compare different architectures?	

!

!10

Prelim
inary

(*)Mira nominal consumption/number of nodes	

(**) Measured for a ODROID-XU+E evaluation board	

(***)Power consumption measured via “Intel Xeon Phi Coprocessor Status Panel”	

All other are max TDP specifications
Prelim

inary

Comparison of compilation options/libraries

!11

Compilers
GCC 4.4.7
GCC 4.8.1
ICC 14.0.1
CLANG 3.3
G4 options

• Using to static libraries
shows a 20% gain in
performances	

• Turning off some G4
options for
productions also
additional brings 6-7%	

Future developments in Geant4

Highest priority

•Further reduce memory consumption. Rule of the thumb: fit
complex simulations w/ O(100) threads in O(GB) memory	

- e.g. typical computing power of accelerators	

•In our experience: minimize memory usage can sometime conflict
with other performance considerations (e.g. reduce memory
“churn” via caching need special attention for thread-safety)	

•Most memory consuming objects: geometry and EM physics	

- Efficient memory reduction already achieved in 10.0.beta	

- Next: need to concentrate on Hadronics physics (especially: cross-
sections, specific models with large not-shared tables -BIC-)

!13

Task-based model: CMS

•Current design assumes thread and worker are same thing…	

•Not always easy to integrate with external frameworks based on task
concept (no direct control of threads).	

- Strong interest from CMS on Intel’s TBB, ATLAS is also considering it (at least as a
level of study)	

- Important requirement: assume we have a pool of tasks of different nature
(generation, simulation, digitization, reco, I/O) to be executed by a set of threads.
We want to “occupy” only a fraction of the threads with simulation task at any
given moment. This requires “migration” of simulation from a thread to another
one (“clean up” is the difficult part)	

•Introduced concept of “workspace”:	

- Encapsulate all thread/task private data in resource that can be exclusively
requested, used and released	

- Currently only limited functionality for geometry module

!14

“Splitting” of events: ATLAS

•ATLAS framework can already implement a simple sub-event
parallelism:	

- Get a single generator event (hundreds primaries) and divide it (e.g. by
region)	

- Each “piece” becomes a G4Event	

- Hand over to G4 each separately. Effectively split a huge HEP event in
many G4Events 	

•Possible to use MT to parallelize	

- Once framework is made thread-safe: work ongoing

!15

Heterogeneous parallelism: MPI based G4MT

• MPI based parallelism available in Geant4	

• MPI works together with MT	

• Probably most interesting for non-HEP domains and/or SuperComputers

Example:	

4 MPI jobs	

2 threads/job	

MPI job owns histogram

Next Step:	

Host + MIC simulation	

Based on MPI

2014+ simplified work-plan

•We already have intra-node and intra-core parallelism efficiently in place	

- Algorithm implementations are the place to look to get more performance

(examples: see G4em review from Krzystof and Had XS caching from Pedro)	

•From profiling analysis:	

- G4 profile is very flat: top 5 functions take: 3%, 2%, 2%, 1%, 1%	

- For HEP use cases CPU-time is spent equally in geometry and physics (~30% each)	

•From profiling we can see what to improve: 	

- Complex algorithms: often they are “plain translations” of complex physics

formulas: not CPU efficient (but easier to read)	

- Review use of (large) arrays and caching of numbers (especially true for MT)	

- Introduce modern parallel RNG engine (RNG takes ~1%) and use of RNG vector

interfaces	

- Similarly look at other “mathematical” aspects: 3- and 4-vectors	

- Switching to fast G4Pow and G4Log brought several % improvements

!17

Gooda Example (ParFullCMS)

!18

Where do we spend time?

!19

Physics
Geometry

B-Field

EM physics tables
Specific HAD σ

Geometry navigation
Specific geometry
Navigation / σ interrogation
HAD σ
RNG
B-Field

Specific geometry

B-Field
Geometry navigation
Geometry navigation

Geometry navigation
Geometry navigation

Example: our opportunities in the two top functions

Hadronic cross-sections (2%): two-level loop containing three std::exp and
divisions between doubles

!20

EM tables (3%): search in large array resulting in low cache efficiency

Benefits of MT developments for sequential code

Very important lesson learnt this year : improvements in MT has
given benefits also to sequential users!

!21

Conclusions

•Geant4 version 10 is the first large scale HEP software to massively
employ parallelism through multithreading	

•Thread-safe code is the most important precondition for parallel
software: G4 code is now fully thread-safe	

•Opportunities exists to speedup simulation (e.g. 20% from static libs)
without need to modify code	

•We have seen clear trend in compiler generations in producing more efficient code.
What else can we use better (e.g. PGO, auto-vectorization,…)? 	

•Large core-count and/or low-power consumption architectures can be
used with HEP typical workloads	

•Physics performance of G4 is demonstrated (e.g. Higgs discovery, treatment
planning): improving the speed of physics algorithm would give greater
benefit.

!22

Backup

G4 on MIC

•Cross-compilation was relatively straightforward:	

•Adding -­‐mmic to compilation flags via CMake	

•Modified couple of files implementing GNU specific pragmas	

•Two ways of working:	

- Offload work to the card (via #pragma)	

- Native mode compile full application, start via ssh	

•Only second option used so far : particularly attractive combining
with MPI since minimizes data traffic over PCIe	

- Coordinate same program on host and card	

- Checkpointing successfully used to substantially speedup initialization - from
O(min) down to O(sec)	

•Limitation was memory usage: only with top of the line MIC model
can use all 244 threads

!24

!25

Thread Local Storage

10% critical

Sp
ee

du
p

0.0000

1.0000

2.0000

3.0000

4.0000

5.0000

6.0000

7.0000

8.0000

9.0000

N threads

• Each (parallel) program has
sequential components
• Protect access to

concurrent resources
• Simplest solution: use mutex/lock	

• TLS: each thread has its own

object (no need to lock)
• Supported by all modern

compilers
• Challenge: only simple data types

for static/global variables can be
made TLS	

• Warning: hidden locks are
important too (e.g. operator
new, use of std::strstream)

NB: results obtained on toy application, not real G4

!26

MT libs Vs SEQ libs

Comparing with sequential

!27

1=Sequential

1 thread =>	

Overhead for MT	

Very small CPU penalty	

~1%

10 threads =>	

50% memory w.r.t.	

10 sequential instances

5%

1=Sequential

G4 V10.0

!28

Hadronic memory usage

• The hadronics most memory hungry (5MB) hot-spot is BIC
model (even when not used). Some rework needed	

• The second Hadronics components using more memory are
cross-sections (2.2MB) stored in G4CrossSectionDataStore	

• Models/processes account for about 1MB of memory 	

• It is realistic to reduce memory footprint for Hadronics of a

factor 2	

!

• Note: other models have a completely different profile	

• HP models: currently each thread load all HP tables, test11 for HP uses

several GB of memory. No work on this done yet
• Requires strategy for sharing database files

