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Introduction
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* Event level parallelism via multi-threading (POSIX based)

Bullt on top of experience of G4AMT prototypes

Main design driving goal: minimize user-code changes

ntegrated into Version 0.0 codebase

e Public release
e MT code e All functionalities

integrated into borted to MT

G4 10
GAMT 9.5 G4 G4 10.0 .
GAMT 9.4. (2011) ) = 5519) 10.0.beta (Dec. 2013) (ggﬁi)

Proof of principle * APl re-design e Further
* |dentify objects to * Example migration Refinements

be shared * Further testing * Focus on further
* First testing * First optimizations performance

improvements



Multi-threading master/worker model
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Per-event RNS seeds
pre-prepared:
guarantees
reproducibility

Threads compete for next
“bunch” of events. Optimal
bunch size Is a parameter to
minimize locking

Command line scoring and G4
histo tools automatically perform
reductions at the end of the job.
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Thread-safety in Version 10.0

1 AL

* Design: lock-free code during event-loop
* Thread-safety implemented via Thread Local Storage
* “Split-class” mechanism: reduce memory consumption
- Read-only part of most memory consuming objects shared between

thread: geometry, (EM) physics tables
- Rest I1s thread-private

GeometryObject

- shapeSize
- shapePosition
- TLS reference

SplitClass Thread1 SplitClass Thread2 SplitClass Thread3
- sensitiveDetector - sensitiveDetector - sensitiveDetector




User-feedback

1 A

*Very strong interest from user community: 30 threads in new
dedicated user-forum (not only HEP)

* CMS: interest In integration with TBB-based experimental
framework. First simple TBB-based example provided (examples/
extended/parallel/TBB)

* ATLAS: Interest in evaluation MT in ISF (Integrated Simulation

Framework) mixing different flavors of simulation (e.g. fast and
full) and possibly In parallel

* ALICE: strong interest running iIn MT already during this year

*Uni Manchester: use of G4 on Xeon Phi for imaging and
treatment planning






General considerations

1 A

* Fully reproducible: given an event and its initial seed the RNG history is
iIndependent of the number of threads and order in which these are
simulated

e Corollary |: given the seeds, sequential and MT builds are equivalent
e Corollary 2: being able to reproduce a single event in a dedicated job (l.e. crashes)

*MT functionality introduces minimal overhead (~ %) w.rt. sequential
*Very good linear speedup up to very large number of threads O(100)

* Good memory reduction: only 30-50MB/thread (depends on application)
* Hyper-threading adds additional +20% throughput

* Working out-of-the-box with success on different architectures x36,
ARM, MIC, £ Atom, REIBM Bluegene/Q



Results
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Cross-comparing architectures

el AL

Throughput | ' P M\
400 BN Evts/min/cpu/GHz lg :

BN Evts/min/cpu/GHz/Watt -see notes- * Throughput normalized per GHz
350 and “socket” (or node / card)

17
* Not a measure of the absolute

300

s performance of a system

* Also reported Throughput/Watt:
not realistic (mainly not counting

250¢ L

(4]

server, very rough!) only to give an
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-

Evts/min/cp1/GHz
Evts/m n/cpu/GHz ' Watt

idea of what we are talking about

* What is the best “metrics’ to
compare different architectures?

w

Absolute performances:

====== Max Events/min/cpu, =======

154.4619 Intel Xeon 5520@2.27GHz

319.7392 Intel Xeon_X5650@2.67GHz

534.6305 Intel Xeon E5-2695 v2@2.40GHz
73.8040 Intel "Atom C2730@1.7GHz

46.8705 Exynos, 5410 Octa Cortex—A15@l.6GHz
119.2088 BlueGene/Q@1l.6GHz

334.4548 ' Intel Xeon Phi 7120P@1.238GHz
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(*)Mira nominal consumption/number of nodes

(**) Measured for a ODROID-XU+E evaluation board R — ) —

(***)Power consumption measured via “Intel Xeon Phi Coprocessor Status Panel”

All other are max TDP specifications 10



Comparison of compilation options/libraries

G4 Options

Static Libs

Shared Libs

+20%

+

+10%

Default
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Highest priority

1 A

* Further reduce memory consumption. Rule of the thumb: fit
complex simulations w/ O(100) threads in O(GB) memory
- e.g. typical computing power of accelerators

*In our experience: minimize memory usage can sometime conflict
with other performance considerations (e.g. reduce memory
“churn’ via caching need special attention for thread-safety)

* Most memory consuming objects: geometry and EM physics

- Efficient memory reduction already achieved in 10.0.beta
- Next: need to concentrate on Hadronics physics (especially: cross-
sections, specific models with large not-shared tables -BIC-)
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Task-based model: CMS

N

* Current design assumes thread and worker are same thing...

*Not always easy to integrate with external frameworks based on task

concept (no direct control of threads).

- Strong interest from CMS on Intel's TBB, ATLAS is also considering it (at least as a
level of study)

- Important requirement: assume we have a pool of tasks of different nature
(generation, simulation, digitization, reco, I/O) to be executed by a set of threads.
VWe want to “occupy” only a fraction of the threads with simulation task at any
given moment. This requires “migration” of simulation from a thread to another
one (“‘clean up” is the difficult part)

*Introduced concept of “workspace”.

- Encapsulate all thread/task private data in resource that can be exclusively

requested, used and released
- Currently only limrted functionality for geometry module
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“Splitting” of events: ATLAS

* ATLAS framework can already implement a simple sub-event

parallelism:

- Get a single generator event (hundreds primaries) and divide it (e.g. by
region)

- Each “piece’ becomes a G4Event

- Hand over to G4 each separately. Effectively split a huge HEP event in
many G4Events

* Possible to use MT to parallelize

- Once framework Is made thread-safe: work ongoing

o1 AL
DN
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Heterogeneous parallelism: MPI based G4AMT

 MPI based parallelism avallable in Geant4

e MPI works together with MT
e Probably most interesting for non-HEP domains and/or SuperComputers

Dose Distnbation Dose Distribution

X1cm)

Example:
4 MPI jobs s i ot il NI 2
2 threads/job IR i s
MPI job owns histogram Eo

Dose Cistnibastion Dose Drstnibastion

X 1em)

Next Step: e o e
Host + MIC simulation PO O 1 b AR e
Based on MP!




2014+ simplified work-plan

1

* We already have intra-node and intra-core parallelism efficiently in place

- Algorithm implementations are the place to look to get more performance
(examples: see G4em review from Krzystof and Had XS caching from Pedro)

* From profiling analysis:

- G4 profile is very flat: top 5 functions take: 3%, 2%, 27, 196, 1%

- For HEP use cases CPU-time i1s spent equally in geometry and physics (~30% each)
* From profiling we can see what to improve:

- Complex algorithms: often they are “plain translations of complex physics
formulas; not CPU efficient (but easier to read)

- Review use of (large) arrays and caching of numbers (especially true for MT)

- Introduce modern parallel RNG engine (RNG takes ~19%) and use of RNG vector
interfaces

- Similarly look at other "mathematical” aspects: 3- and 4-vectors

- Switching to fast G4Pow and G4lLog brought several % improvements

17



Gooda Example (ParFullCMS)
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Reports

reports/Sample

reports/G4MT-nev

reports/G4MT-old

reports /G4AMT-new Hotspots

= <7 Cycles Samples

o
Proce‘>5 »

V4
ParFullcms
aggregated_kernel_object
vm1inux
puppet
perf
sshd
kworker/9:0
khugepaged
kworker/7:0
kworker/0:0
kworker/14:2

[F bk+hraadd

= < Cycles Samples
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G/

G4rhysicsvector: :value(do..
G4elasticHadrNucleusHE: :H..
G4Navigator::LocateGlobal..
G4rolyconeSide: :DistanceA..
G4steppingManager: :Define..
G4CrossSectionDataStore: :..
CLHEP: :MTwistEngine: :flat.
G4ClassicalRk4: :DumbStepp..
G4Navigator: :ComputeStep (..

G4voxelNavigation: :Comput..

249801
175220
190355
134038
131792
121696
107107

82552
110755
113825

modu'® Pt

(3%)
(2%)
(2%)
(1%)
(1%)
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(1%)
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183440
110935
141634
80485
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60097
37933
76064
80083
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74 74 %4
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358 0%) 248 (69%) 87 90

308 (0%) 190  (61%) 71 113

308 (0%) 234 (75%) 56 90

298 (0%) 190  (63%) 48 83
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Enter search term
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¢4766639 Q}/MSBZ (33%) Q}SBS?IB (56%) @1»8/0157 (0%) @»5/22052 (6%) Qéougs (2%) Qt;724700 (20%) Q:}UZS (0%)
(73%) 81361 96333 157004  (62%) 102099  (40%) 3478 (1%) 16477  (6%) 72405 (28%) 606 (0%)
(63%) 119668 177152 2405 (1%) 3021 (1%) 70 (0%) 884  (0%) 467  (0%) 123127 (70%) 1660 (0%)
(74%) 59378 74117 144841  (76%) 101920  (53%) 1958  (1%) 9192  (4%) 7890  (4%) 25192 (13%) 586 (0%)
(60%) 99852 125190 14410  (10%) 10643 (7%) 1153 (0%) 6291  (4%) 20 (0%) 58860 (43%) 636 (0%)
(67%) 79845 87085 75913 (57%) 68719  (52%) 358 (0%) 7225 (5%) 3597 (2%) 15542  (11%) 407  (0%)
(64%) 73528 96325 73975  (60%) 36391 (29%) 258 (0%) 4541 (3%) 21048 (17%) 13356 (10%) 318 (0%)
(56%) 89551 93810 30359 (28%) 41231 (38%) 179 (0%) 7622 (7%) 15185 (14%) 447  (0%)
(45%) 113510 131667 2723 (3%) 9948  (12%) 30 (0%) 2335 (2%) 6141  (7%) 17739 (21%) 199  (0%)
(68%) 52331 68123 28749  (25%) 103898  (93%) 626  (0%) 9063  (8%) 298 (0%) 11041 (9%) 417 (0%)
(70%) 50370 58626 62875  (55%) 55998  (49%) 745 (0%) 8238  (7%) 4074  (3%) 11538  (10%) 398 (0%)
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Where do we spend time?

8229714  (99%)
/data/adotti/new/11b64/1ibGdprocesses. so 2862844 (34%) P hysics
/data/adotti/new/11b64/11bG4geometry.so 2488445 (30%) Geometry
/11b64/1ibm-2.12.s0 879001  (10%)
/data/adotti/new/11b64/1ibG4tracking.so 487678 (5%) B-Field
/data/adotti/new/11b64/1ibG4clhep.so 307310 (3%)
/data/adotti/new/11b64/1ibG4global.so 355528 (4%)
/data/adotti/new/1ib64/1ibG4track.so 299122 (3%)
/da
Qv/ Va
G4rhysicsvector: :value(double, unsigned long&) const 249801
G4elasticHadrNucleusHE: :HadrNucDifferCrsec(int, int, double) 175220
G4Navigator: :LocateGlobalPointAndSetup (CLHEP: :Hep3vector const&, CL.. 190355
G4rolyconeSide: :DistanceAway (CLHEP: :Hep3Vector const&, bool, double.. 134038
G4ASteppingManager: :DefinePhysicalStepLength() 131792
G4CrossSectionDataStore: :GetCrossSection(G4DynamicParticle const¥, .. 121696
CLHEP: :MTwistEngine: :flat() 107107
G4ClassicalRk4: :pumbStepper(double const*, double const®*, double, d.. 82552
G4Navigator: :ComputeStep (CLHEP: :Hep3vector const&, CLHEP: :Hep3vecto.. 110755
G4voxelNavigation: :ComputeStep(CLHEP: :Hep3Vector const&, CLHEP: :Hep.. 113825
G4Mag_UsualeqgRhs: :EvaluaterRhsGivenB(double const*, double const®*, d.. 109085
G4ASteppingManager: :Stepping() 102486
GATransportation: :AlongStepGetPhysicalInteractionLength(G4Track con.. 99485
G4rolyPhiFace: :InsideEdges (double, double, double®, G4PolyPhiFaceve.. 81826

8245843 (100%)

(3%)
(2%)
(2%)
(1%)
(1%)
(1%)
(1%)
(1%)
(1%)
(1%)
(1%)
(1%)
(1%)

(0%)
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Specific HAD o

EM physics tables
Geometry navigation
Specific geometry
Navigation / o interrogation
HAD o

RNG

B-Field

Geometry navigation
Geometry navigation
B-Field

Geometry navigation

Geometry navigation
Specific geometry
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Example: our opportunities in the two top functions

Din2 = Din2 + N2p*BinCoeff*
(C1l/explp*std: :exp(-theQ2/4/explp)-
C2/exp2p*std: :exp(-theQ2/4/exp2p)+

C3/exp3p*std: :exp(-theQ2/4/exp3p));

Hadronic cross-sections (2%): two-level loop containing three std::exp and

divisions between doubles

519
520

I,
1
:

521
522

i

- 523
e 524
525 }

y = datavector[lastIdx];
} else {
lastIdx = FindBin(theEnergy, lastIdx);
y = Interpolation(lastIdx, theEnergy);
}
return y;

EM tables (3%): search in large array resulting in low cache efficiency
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Benefits of MT developments for sequential code

1 A

DM

Ratio - SimplifiedCalo higgs.FTFP_BERT.1400.4

| | | | | | | | | | I | | | | [ [

14— + AMD Opteron 6128 @2.00 GHz | .......................... _

CPU Time Ratio <9.X.Y/9.5>

06 e 0 0 e = e e —

| I l l | | | | | | I I l | | | |
56 5005 o3815,0:80 B0 B 8 R0 e R Lo B

Geant4 Version

Very important lesson learnt this year: improvements in M1 has
given benefits also to sequential users!
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Conclusions

1

* Geant4 version |0 is the first large scale HEP software to massively

employ parallelism through multithreading

* Thread-safe code Is the most important precondition for parallel
software: G4 code Is now fully thread-safe

* Opportunities exists to speedup simulation (e.g. 20% from static libs)
without need to modify code

*We have seen clear trend in compiler generations in producing more efficient code.
What else can we use better (e.g. PGO, auto-vectorization,...)?

*Large core-count and/or low-power consumption archrtectures can be
used with HEP typical workloads

* Physics performance of G4 Is demonstrated (e.g. Higgs discovery, treatment
blanning): iImproving the speed of physics algorithm would give greater

benefit.
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G4 on MIC

N

* Cross-compllation was relatively straightforward:
* Adding -mmic to compilation flags via CMake

*Modified couple of files implementing GNU specific pragmas
* fwo ways of working:

- Offload work to the card (via #pragma)

- Native mode compile full application, start via ssh

* Only second option used so far: particularly attractive combining
with MPI since minimizes data traffic over PCle

- Coordinate same program on host and card
- Checkpointing successfully used to substantially speedup initialization - from

O(min) down to O(sec)
* Limrtation was memory usage: only with top of the line MIC model
can use all 244 threads
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Thread Local Storage

[ ad_|

Speedup

10% critical
9.0000

8.0000
7.0000

6.0000

5.0000

4.0000

3.0000
2.0000

1.0000

0.0000

N threads

NB: results obtained on toy application, not real G4

 Fach (parallel) program has

sequential components

e Protect access to
concurrent resources

* Simplest solution: use mutex/lock

e TLS: each thread has its own
object (no need to lock)

* Supported by all modern
compilers

 Challenge: only simple data types
for static/global variables can be
made TLS

* Warning: hidden locks are
important too (e.g. operator

new, use of std: :strstream)

Tk M\
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MT libs Vs SEQ libs
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Comparing with sequential

ol A
P b M\
Speedup Efficiency - 50 GeV
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| thread => |0 threads =>

Overhead for MT
Very small CPU penalty
~ 1%

50% memory wirt.
|0 sequential instances
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Hadronic memory usage

1 A

* The hadronics most memory hungry (5MB) hot-spot i1s BIC
model (even when not used). Some rework needed

* [he second Hadronics components using more memory are
cross=-sections (2.2MB) stored in G4CrossSectionDataStore

* Models/processes account for about |MB of memory

* [t s realistic to reduce memory footprint for Hadronics of a
factor 2

* Note: other models have a completely different profile

e HP models: currently each thread load all HP tables, testl | for HP uses
several GB of memory. No work on this done yet
e Requires strategy for sharing database files
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