
Simula'on	
 Vector	
 Prototype

Philippe	
 Canal	
 /	
 FNAL	

assembled	
 with	

F.	
 Carmina',	
 A.	
 Gheata,	
 S.	
 Wenzel	
 /	
 CERN	

S.Y.	
 Jun/	
 FNAL	

Vector	
 Prototype	

Outline

v  Overview

v  Scheduler

v  Geometry

v  Physics Processes

Vector	
 Prototype	
 2	

A luminous future for HEP...

Vector	
 Prototype	

LS1	

LS2	

3	

A fresh look at the Simulation
n  More than a factor 10 increase expected in the simulation needs

in the next few years!
n  The most CPU-bound and time-consuming application in HEP

with large room for speed-up
q  Largely experiment independent
q  Precision depends on (the inverse of the sqrt of) the number of events

n  Grand strategy
q  Explore opportunities with no constraints from existing code
q  Expose the parallelism at all levels, from coarse granularity to micro-

parallelism
q  Integrate slow and fast simulation to optimise both in the same framework
q  Explore if-and-how existing physics code (GEANT4) can be optimized in

this framework

n  Improvements (in geometry for instance) and techniques are
expected to feed back into other HEP applications

Vector	
 Prototype	
 4	

ATLAS volumes sorted by transport time. The same
behavior is observed for most HEP geometries.	

50 per cent of the time spent in
0.7% volumes	

Classical HEP transport is mostly local !

• Navigating very large data
structures

• Cache misses, No locality
• OO abused: very deep

instruction stack
• Existing code very inefficient

(0.6-0.8 IPC)	

• Event- or event track-level
parallelism will better use
resources but won’t
improve these points	

• Geometry navigation (local)
• Material – X-section tables
• Particle type - physics processes	

Vector	
 Prototype	
 5	

Deal with particles in parallel	

Output buffer(s)	

Particles are transported per
thread and put in output
buffers	

A dispatcher thread puts
particles back into transport
buffers	

Everything happens
asynchronously and in
parallel	

The challenge is to
minimise locks	

Keep long vectors	

Avoid memory
explosion	

Introduce “basketised” transport

Vector	
 Prototype	
 6	

Scheduler	

Geometry
navigator	

Geometry
algorithms	

Physics	

Basket of
tracks	

Basket of
tracks	

x-sections	
 Reactions	

Dispatching	
 MIMD	

SIMD	

Vector	
 Prototype	
 7	

Scheduler

Vector	
 Prototype	
 8	

Outlook
v  Event structure and containers
v  Baskets and data queues
v  Basket managers (per LV)
v  Transport (physics and geometry) and track phases
v  Scheduler class and scheduling thread
v  Scheduling policies and multithreading

v  Connection to vector geometry
v  Connection to physics
v  Connection to GPU prototype

v  Monitoring

Vector	
 Prototype	
 9	

Baskets of tracks
v  Unit of work for the transport thread

v  Containing only tracks in a single logical volume
v  Current implementation: basket = input and output GeantTrack_v
v  GeantTrack_v:

v  SOA matching GeantTrack using internal memory management for vector
performance

v  Buffer management: allocate, copy, resize, import and export and remove
GeantTrack

v  Management of holes (i.e. tracks that finished transport in the current
propagation cycle)
v  compact Vector when not efficient-> compact tracks (using bit container)

v  Sorting by track status, needed to vectorize different propagation stages
v  E.g. transport of neutral tracks

v  Each track about 196 bytes + (average) 150 bytes of associated data.

Vector	
 Prototype	

fBuff	

fEventV	
 fPar'cleV	
 fXPosV	
 fYPosV	
 fPathV	
 fNextPathV	
 …	
 …	

heap	

10	

Basket	
 lifecycle

empty	

full	

Basket	
 pool	

TGeoVolume	

Basket	
 manager	

current	

Generator	
 Scheduler	

1…Nvolumes	
 Transport	

queue	

Propagator	

transported	

recycle	

AddTrack	

priority	

AddTrack	

Push	
 on	
 	

threshold	

Push	
 on	
 	

event	
 flush	

Vector	
 Prototype	
 11	

Basket	
 transport

PhysicsSelect	

fProcessV[i]	

fPstepV[i]	

PropagateTracks	

Input	
 tracks	
 Output	
 tracks	

kCrossing	

kExi'ng	

kPhysics	

kKilled	
 (geom)	

PostStep	

(con'nuous)	

fXposV[i],	
 …	

fXdir[i],	
 …,	
 fPV[i],	
 fEV[i]	

PostStep	

(discrete)	

kNew	

kKilled(phys)	

kKilled(phys)	

Vector	
 Prototype	
 12	

PropagateTracks

•  kVector	
 –	
 con'nue	
 in	
 vector	
 mode	

•  kSingle	
 –	
 call	
 PropagateTracksSingle	
 at	
 the	
 given	
 stage	

•  kPostpone	
 –	
 copy	
 remaining	
 tracks	
 to	
 output	

•  MarkRemoved	
 +	
 Compact	
 –	
 compact	
 holes	
 and	
 copy	
 these	
 tracks	
 to	
 the	
 output

PostponedAc'on	

kVector	
 kSingle	
 kPostpone	

ComputeTransport	

Length<Single>	

FindNextBoundary	

AndStep	

vector	
 loop	

Propagate	

Neutrals	

kCrossing	

kExi'ng	

kPhysics	

MarkRemoved	

Compact(output)	

Propagate	

Safe<Pstep	

kPhysics	

Propagate	

Close	
 to	
 bound.	

kCrossing	

kExi'ng	

Propagate	

with	
 safety	

fSnextV[i],	
 fSafetyV[i]	

stage0	
 stage1	
 stage2	

Vector	
 Prototype	
 13	

Scheduler
v  Pulls transported baskets, dispatches tracks to basket managers per volume

v  Single thread, one scheduler/ multiple thread, multiple schedulers

v  TBB task approach, to be investigated after understanding and tuning the scheduler
with real physics

v  Applying policies for:

v  Workload balancing

v  Divide the work evenly to scale with number of workers

v  Queue control: garbage collection on work queue depletion

v  Improvement:	
 schedule	
 physics	
 as	
 separate	
 task	
 (process	
 selec'on	
 and	
 discrete	

processes	
 post-­‐step)

v  Memory management

v  Not active currently, the idea it to trigger hit/digits collection and memory cleanup on
thresholds

v  Keep large vectors

v  Raise transportability thresholds per volume

v  Postpone sparse tracks when not in garbage collection mode

v  Trigger single track mode when vectorization gives just overhead

Vector	
 Prototype	
 14	

GPU Connector to an External
Scheduler

v  GPU connector is an interface to the Vector Prototype
v  Challenges

v  different geometry implementation – need to translate location and history
information back and forth

v  difference in data layout

v  only a subset of particle can be handled

v  (ideal) bucket size very different from CPU

v  try to maximize kernel coherence

v  Implementation
v  stage particles in a set of buckets

v  list and type of bucket is customizable, one idea is to buckets based on particle/
energy that have a common (sub)set of likely to apply physics.

v  within this baskets the particles are placed in order/group given by the VP

v  delay the start of a kernel/task until it has enough data or has not received any new
data in a while

v  to maximize overlap uploads are started for a task after handling a CPU basket

Vector	
 Prototype	
 15	

Monitoring
v  Internals of track dynamics

v  Track counters in different phases, efficiency to prioritize events
v  Basket dynamics

v  Number of baskets, size per volume, transportability threshold
v  Vector size

v  Memory monitoring
v  Multithreading efficiency

v  Locks and waits analysis, concurrency
v  New class GeantTrackStat

v  Used if GEANT_DEBUG=1
v  Track counters for number of tracks/steps per event, read in the

different track phases
v  Separate monitoring thread with graphics to be done

Vector	
 Prototype	
 16	

 Vectorizing and optimizing
detector geometry classes	

Sandro Wenzel	

Vector	
 Prototype	
 17	

Geometry - Outline

v  First Results

v  Challenges on the path to continue

v  Arguments for template based techniques in future
geometry development
v  Template class specialization for performance

increase / better vectorization (this talk)

v  Template techniques for code generality (future talk)

Vector	
 Prototype	

focus on ideas rather than	

many performance numbers	

18	

First Results

Vector	
 Prototype	

v  Activity since spring 2013 focused on studying feasibility of vectorizing
(primitive and higher-level) geometry algorithms for the Vector and GPU
simulation prototypes	

v  Demonstrated for a couple of shapes (box, tube, cone) that this is very
possible indeed with good performance gains	

v  This came at the cost of totally rewriting the routines to make them
vector friendly	

v  Adopted programming model: Vc library, Intel Cilk Plus Array
notation	
 19	

First Results
v  higher-level vector performance benchmark:	

v  (simplified) navigation of vectors of particles in a simplified detector with daughter
shapes	

"  max SIMD speedup of 3.1	

v How much better can we do?	

v  profiling@Intel: very good already; maybe try to reduce unnecessary

operations (reduce branches; floating point ops) 	

v  much of the ideas here are based on this original advice	

3.1x	

Vector	
 Prototype	
 20	

Further goals / Challenges

v  Start a systematic effort to produce a “prototype ready”
vectorized geometry library for both CPU and GPU.	

v  provide a library with vector interfaces for important geometry function.	

v  provide a library targeting the CPU + CUDA at the same time	

v  achieve best performance 	

v  Main challenges ahead:	

v  current code does not serve for SIMD vectorization or SIMT -- there are
often too many branch levels (see for instance tube::distanceToIn in
Geant4/Usolids)	

v  hence, total code rewrite necessary 	

v  complete revalidation necessary

Vector	
 Prototype	
 21	

challenges continued ... / implications

v  Targeting different backends and instructions sets (vector, GPU, scalar)
sounds like a lot of code repetition if we continue to code the way it
was done in the past	

v  will be a nightmare for maintenance and testing	

v  We should hence (these points are related)	

v  write code which is generic 	

v  functions which work with scalar or vector arguments	

v  reuse code as much as possible without performance loss	

v  example: many kernels for tube / cone / polycone are shared and should be written
only once (without function calls)	

v  write code which is composable from smaller “codelets”

Vector	
 Prototype	
 22	

a proposed direction

v  A templated library is a good approach to solve the general
challenges presented:	

v  one can write generic code easily with template functions	

v  one automatically writes easily reusable(“inlineable”) code since templates usually
requires coding in header files	

v  can solve the problem of different backends (CPU/GPU)

slide will still be updated !!	

an example for templated code?	

taken together these requirements points to C++
templates	

"  example 1: tube example from slides before Christmas	

"  example II: matrix transform specialization	

"  average gain ~20% compared to non-specialized code with runtime branches	

"  makes vectorization much more efficient	

v  A templated library is perfect to achieve/increase performance:	

v  template class specialization allows to produce very optimized code for particular
shapes / matrices, etc.	

Vector	
 Prototype	
 23	

Example of template class specializations	

Vector	
 Prototype	
 24	

HalfHollowTube	
 FullTubePhi	

68%	

Motivation for class specialization ���
-- reduction of branches --

v  shape primitives come in many flavours/realizations (here for tube)

v  in reality current libraries (USolid,Root) implement one or few generic tube
classes -- mainly to have few code lines to maintain	

v  a lot of the branches (if statements) are static in the sense that they test properties of
the tube instance (“if I am hollow then; else ”)	

v  such static branches reduce performance (we will see by how much)	

FullTube	

15%	

HollowTube	

10%	

HollowTubePhi	

5%	

statistics generated from Atlas, CMS, ALICE, LHCB geometries (ftp://root.cern.ch/root/geometries.tar.gz)	

few	

Vector	
 Prototype	
 25	

possibilities to make algorithms more specialized

v  canonical approach: solution with handwritten separate classes

v  alternative idea: solution with templated classes	

AbstractTube *t = new FullTube();	

code repetition 	

performance	

(almost) no code repetition 	

performance	

AbstractTube *t = new SpecializedTube<FullTube>();	

AbstractTube *t = GeoManager::CreateTube(...);	

user does not even need to care about special classes / should use factory
methods 	

v  a way to get rid of many branches would be to introduce a separate class for each
important tube realization	

Vector	
 Prototype	
 26	

common code - many realizations

template<typename TubeType> !
bool SpecTube<TubeType>::Inside(Vector3D const & x) const!
{ !

"// checkContainedZ!
"if(std::abs(x.z) > fdZ) return false; !

!
"// checkContainmentR!
"double r2 = x.x*x.x + x.y*x.y; !
"if(r2 > fRmaxSqr) return false; !

!
"if (TubeTraits::NeedsRminTreatment<TubeType>::value)!
"{ !
" "if(r2 < fRminSqr) return false; !
"} !

!
"if (TubeTraits::NeedsPhiTreatment<TubeType>::value)!
"{ !
" "// some code!
"} !
"return true; !

}	

template<typename TubeType> !
class !
SpecTube{ !
 // ... !
 bool Inside(Vector3D const &) const; !
 //... !
};	

v  sharing code between classes with compile-time branches (scalar toy example)	

template<typename TubeType> !
bool SpecTube<TubeType>::Inside(Vector3D const & x) const!
{ !

"// checkContainedZ!
"if(std::abs(x.z) > fdZ) return false; !

!
"// checkContainmentR!
"double r2 = x.x*x.x + x.y*x.y; !
"if(r2 > fRmaxSqr) return false; !

!
"if (TubeType::NeedsRminTreatment) !
"{ !
" "if(r2 < fRminSqr) return false; !
"} !

!
"if (TubeType::NeedsPhiTreatment)!
"{ !
" "// some code!
"} !
"return true; !

}	

we can express “static” ifs as
compile-time if statements
(e.g. via const properties of

TubeType)	

gets optimized away if a certain
TubeType does not need this code	

compiler creates different binary
code for different TubeTypes	

Vector	
 Prototype	
 27	

Different example for class specialization ���
-- reduction of floating point operations --

v  next to branch reduction; can find many examples where specializing
code can be beneficial to save many floating point operations	

v  example: coordinate transformations between coordinate systems of
different shapes 	

" known to consume a considerable time (in simple geometries) -- Laurent Duhem@Intel	

" advice: reduce the number of useless multiplications

28	

v  often coordinate transformations are treated as a generic “4x4
matrix times a vector” operation 	
 (some exceptions in ROOT)	

treating every transformation by
general code means ~9

multiplications +	

~9 additions per cartesian point	

Vector	
 Prototype	
 28	

Some performance evaluation for tube

v  speedup of calculating distances of 1024 particles to a placed tube in a world volume (with
a high hit rate of 80%)	

HollowTubeWithPhi" ~2.7"

HalfHollowTube" ~2.6"

v  some preliminary speedups compared to USolids scalar	

v  ratio of runtime for vector kernels: non-templated / templated	

FullTube" ~1.15"

HollowTubeWithPhi" ~1.16"

HalfHollowTube" ~1.24"

benefit from templating the tube	

(first estimate - this might be depend
on many circumstances + parameters)	

benefit from vectorizing + templating
the tube (on AVX)	

v  with template approach have now vectorized all realizations of tubes in one
go (previously only simple tubes)	

these SIMD speedups match our expectations	
 Vector	
 Prototype	
 29	

Benchmark revisited

v  able to readdress CHEP13 benchmark with this new prototype

"   new status: max speedup ~ 4 	

v  an initial version of templated vectorized geometry has been finished (shape + coordinate
transform specialization)	

"   old status: max speedup = 3.1 	

v  the template technology gives the extra kick to vectorization !!	

"   new status: relative performance increase by
~30% (seen for 16, 64, 1024 particles)	

https://github.com/sawenzel/VecGeom.git	

Vector	
 Prototype	
 30	

Sandro Wenzel	

some important implications

v  unavoidable facts (on the negative side):	

v  templates require a rethinking of how we implement a geometry library	

v  one needs to code a lot in header files which will stress the compilers	

v  currently this is an incompatible programming style compared to existing libraries
(USolids, ROOT)	

v  the binary code size increases (a lot) - need to study negative impact of this	

v  some implications for users unavoidable (avoid new operator in favour of
factories ...)

v  coding in header files has many positive side effects: 	

v  code can be shared much simpler between different backends/languages such as C+
+/CPU and CUDA/GPU	

v  code can be reused much simpler in different algorithms (by inlining)	

this is nice, but... 	

on the other hand...	

Vector	
 Prototype	
 31	

Physics	
 Processes

Vector	
 Prototype	
 32	

SFT S o F T w a r e D e v e l o p m e n t f o r E x p e r i m e n t s	

γ on Uranium	

Total	

Photoel	
 Compton	

Conversion	

Inelastic	

Geant-V prototype	

Physics tables	

Geant4	
 MC-x	

Physics
v  A lightweight physics for realistic shower development

v  Select the major mechanisms
v  Bremsstrahlung, e+ annihilation, Compton, Decay, Delta ray, Elastic hadron,

Inelastic hadron, Pair production, Photoelectric, Capture + dE/dx & MS

v  Tabulate all x-secs (100 bins -> 90MB)
v  Generate (10-50) final states (300kB per final state & element)

v  It will not be good Geant4, but but it could be the seed of a fast
simulation option

v  Independent from the
MonteCarlo that actually
generates the tables

Vector	
 Prototype	
 33	

SFT S o F T w a r e D e v e l o p m e n t f o r E x p e r i m e n t s	

Testing - benchmarking

v  Same Physics code must work on CPU and GPU
v  Use C++ template techniques to vectorize platform independent code.

v  Standard benchmark Geant4 - Vector Prototype
v  Will have both tabulated physics and vectorized physics ported to Geant4
v  Then can test equivalent physics for each geometry in both framework for

both speed and validity.

v  Simple “physics” benchmark for Vector Prototype
v  We decided to use something like geant4_vmc/examples/E03 because is

a simple calorimeter
v  The idea is to replace the had part with the prototype x-sec

Vector	
 Prototype	
 34	

SFT S o F T w a r e D e v e l o p m e n t f o r E x p e r i m e n t s	

Where are we now?
❖  Scheduler
❖  The new version, hopefully improved of the scheduler has

been committed and we are testing it

❖  Geometry
❖  The proof or principle that we can achieve large speedups

(3-5+) is there, however a lot of work lays ahead

❖  Navigator
❖  “Percolating” vectors through the navigator is challenging.

We have a simplified navigator that achieves that, but more
work is needed here

❖  Physics
❖  Can generate x-secs and final states and sample them;

starting work on vectorized physics.

Scheduler

Geometry

Navigator

Physics

Vector	
 Prototype	
 35	

SFT S o F T w a r e D e v e l o p m e n t f o r E x p e r i m e n t s	

Summary

v  HEP needs all the cycles it can obtain, nowadays this means
using parallelism and SIMD

v  Simulation is the ideal primary target for investigation for its
relative experiment independence and its importance in the
use of computing resources

v  The Geant Vector project aims at demonstrating substantial
speedup (3-5+) on modern architectures

v  The work is done in close collaboration with the stakeholders
and with Geant4

Vector	
 Prototype	
 36	

2014	
 Milestones

Vector	
 Prototype	
 37	

Milestone – April 11th

•  Setup: simple benchmark: ~Ex03 only boxes

•  G4 with ‘tabulated’ physics

•  Connect tabulated physics with Vec prot.

•  Port Brems to Vector prot, and use also in G4 with
tabulated

•  Develop USolid and UGeom to be able to run Ex03
in Vector prototype

•  Robust scheduler

Vector	
 Prototype	
 38	

Field Propagation

•  Extend Vector I/F for Field Propagation

•  Important for realistic CPU

•  Depends on other objectives, resources

•  Decision point: February 14th

Vector	
 Prototype	
 39	

ASAP after April
•  Move to Geant4 10.0

•  Nightly build system

•  Both are

•  Recommended or desirable for April

•  Necessary for July

Vector	
 Prototype	
 40	

Milestone 2 – end July

•  Magnetic Field (may be earlier)

•  Intermediate Detector: 3-5 solids all Vector

•  CMS(v 2008): 10 solids - Top 5 vector

•  Vector Compton process

•  including first pass of abstraction

•  Testing all combos (3 geom, VP/VPT/G4T/
G4TV/G4V/G4)

•  Check VP=G4TV, VPT=G4T, G4V=G4

Vector	
 Prototype	
 41	

Glossary

•  VP= Vec Prototype with Max Vector Procs

•  VPT= Vec Prototype with Tab Procs only

•  G4T= G4 with Tabulated Procs ‘only’

•  G4TV= G4 w/ max Vec Procs, rest Tab procs

•  G4V= G4 replacing only Vec Procs

•  G4 = Original Geant4

Vector	
 Prototype	
 42	

Vector Physics

•  Target: create first version of generic code
for Vector and GPU

•  similar to approach of Sandro/Johannes

•  separated from G4

Vector	
 Prototype	
 43	

GPU

•  Get in sync between GPU and Vector

•  Principle shadow developments

•  UGeom

•  Tabulated Physics

•  Navigation - ‘Lock-step’ inquiries to Solid
Type (November ?)

Vector	
 Prototype	
 44	

MIC

•  Expect it to work efficiently if GPU runs well
enough

•  Seek person (Laurent?)

•  to test April prototype, check efficiency

•  follow development.

Vector	
 Prototype	
 45	

November

•  Complete EM Physics (for a Phys list)

•  As close as possible to Std EM Physics

•  One process (e.g. MSc) with 2 models in
Energy

•  Full set of Primitive Shapes

•  Composites (importance in CMS?)

•  Voxelisation?

•  Results for MIC

Vector	
 Prototype	
 46	

Backup	
 Slides

Vector	
 Prototype	
 47	

Team

• Andrei	
 (30%),	
 Fed(50%),	
 John(40%),	

Johannes(100%),	
 Mihaly(100%),	
 Sandro(100%),	

Georgios(50%*0.5),	
 Ta'ana(25%+),	
 doctoral	

student	
 (100%	
 >March)	
 =	
 5.5	
 FTE	

• Philippe(30%),	
 Soon(50%),	
 Guilherme(100%),	

Physics-­‐List-­‐X(20%)	
 =	
 2.0	
 FTE	

• Marilena(?5%),	
 Raman(?100%	
 >June)	

• Laurent	
 (?)	
 (~10%)
Vector	
 Prototype	
 48	

GeantTrack

•  Track	
 iden'fiers:	
 event,	
 slot	
 (memory	
 management),	
 track	
 ID,	
 PDG,	

code	

•  Par'cle	
 iden'fiers:	
 PDG,	
 GeantV	
 code,	
 charge,	
 mass,	
 species	

•  Kinema'cs:	
 posi'on,	
 direc'on,	
 momentum,	
 energy	

•  Status:	
 status,	
 N	
 steps,	
 N	
 null	
 steps,	
 boundary	
 flag,	
 pending	
 flag	

•  Geometry/physics	
 context:	
 process,	
 proposed	
 step,	
 current	
 step,	

distance	
 to	
 boundary,	
 safety,	
 current	
 path,	
 next	
 path	

•  sizeof(GeantTrack)	
 =	
 192	
 bytes	
 +	
 2*sizeof(TGeoBranchArray)	
 =	

192+2*48+depth*4+16	
 =	
 344	
 bytes	
 in	
 average	

•  Can	
 this	
 be	
 reduced?	
 Size	
 influences	
 memory	
 requirements	
 AND	

CPU	
 overhead	
 for	
 reshuffling	
 opera'ons	
 in	
 vector	
 mode.

Vector	
 Prototype	
 49	

Track	
 vectorizable	
 container

•  Track	
 data	
 format	
 not	
 used	
 directly	
 by	
 the	
 transport	

–	
 only	
 used	
 to	
 import	
 tracks	
 from	
 generators/
processes	

–  Track	
 data	
 imported	
 into	
 GeantTrack_v	

•  SOA	
 matching	
 GeantTrack	
 using	
 internal	
 memory	

management	
 for	
 vector	
 performance	

–  Single	
 resizable	
 memory	
 block

fBuff	

fEventV	
 fPar'cleV	
 fXPosV	
 fYPosV	
 fPathV	
 fNextPathV	
 …	
 …	

heap	

Vector	
 Prototype	
 50	

GeantTrack_v

•  Buffer	
 management:	
 allocate,	
 copy,	
 resize	

•  Import	
 tracks	
 from	
 GeantTrack	
 or	
 GeantTrack_v	

–  And	
 track	
 removal	

•  Management	
 of	
 holes	
 (i.e.	
 tracks	
 that	
 finished	

transport	
 in	
 the	
 current	
 propaga'on	
 cycle)	

–  Vector	
 not	
 efficient-­‐>	
 compact	
 tracks	

•  Hole	
 finding	
 algorithm	
 based	
 on	
 TBits	
 +	
 memory	
 copy	

overhead	

•  Sor'ng	
 by	
 track	
 status,	
 needed	
 to	
 vectorize	

different	
 propaga'on	
 stages	

–  E.g.	
 transport	
 of	
 neutral	
 tracks

Vector	
 Prototype	
 51	

Basket	
 managers
•  One	
 basket	
 manager	
 per	
 volume	

–  Receiving	
 tracks	
 entering	
 the	
 volume	
 from	
 generator	
 or	
 scheduler	

–  Accessed	
 by	
 scheduler	
 only	

•  Pool	
 of	
 empty	
 baskets,	
 one	
 current	
 basket	
 +	
 one	
 basket	
 for	
 priori'zed	
 tracks	

•  Lock-­‐free	
 access	
 for	
 unique	
 scheduler	
 (only	
 one	
 thread	
 can	
 add	
 tracks)	

•  Transportability	
 threshold	
 per	
 manager	

–  If	
 threshold	
 reached	
 when	
 adding	
 tracks,	
 the	
 current	
 basket	
 is	
 pushed	
 in	
 the	
 work	
 queue	
 and	

replaced	
 from	
 the	
 pool.	
 Tracks	
 added	
 with	
 the	
 priority	
 flag	
 go	
 to	
 the	
 priority	
 basket	
 which	
 gets	

pushed	
 to	
 the	
 priority	
 side	
 of	
 the	
 queue	

–  Threshold(vol)	
 =	
 Ntracks_in_flight(vol)/2N_threads	
 rounded	
 to	
 %4	
 (min	
 4,	
 max	
 256)

Basket	
 pool	

TGeoVolume	

Basket	
 manager	

current	

1…Nvolumes	

priority	

Vector	
 Prototype	
 52	

Track	
 stages

Imported	

Pending	

(threshol

d)	

Queued	

for	

pickup	

Being	

transpor

ted	

Queued	

to	
 be	

dispatch
ed	

Scheduled	

Basket	

manager	

Transport	

queue	

Generator	

Basket	

transport	

Scheduler	

queue	
 Scheduler	

di
sp
at
ch
	

Pr
io
rit
y	

di
sp
at
ch
	

Vector	
 Prototype	
 53	

Connec'on	
 to	
 physics	
 &	
 geometry

•  Currently	
 trivial	
 approach	
 to	
 physics,	
 have	
 to	
 interface	

to	
 the	
 new	
 physics	
 code	

–  Process	
 selec'on	
 based	
 on	
 total	
 x-­‐sec	

–  Redo	
 process	
 interface	
 for	
 ac'ons	
 (along	
 and	
 post-­‐step)	

•  Connect	
 to	
 vectorized	
 navigator	

–  Even	
 limited	
 to	
 simple	
 setups,	
 we	
 need	
 to	
 understand	
 gains	

and	
 overheads	
 +	
 tuning	

•  Connect	
 scheduler	
 to	
 GPU	
 transport	

–  Using	
 a	
 manager	
 thread	
 to	
 take	
 and	
 transport	
 baskets	
 from	

the	
 main	
 CPU	
 queue	

–  We	
 have	
 to	
 understand	
 if	
 there	
 are	
 extra	
 requirements	

–  Can	
 be	
 done	
 for	
 both	
 geometry	
 and	
 physics	
 baskets

Vector	
 Prototype	
 54	

Overview of key components

Vector	
 Prototype	
 55	

Sandro Wenzel	

Reminder, Motivation
Explore possibilities to recast particle simulation so that it 	

takes advantage from all performance dimensions/technologies	

In HEP, mainly to reduce memory footprint	

Dimension 1 (“sharing data”) : multithreading/multicore	

Geant4 Release 10!	

Currently often not exploited because requires “parallel
data” to work on	

Dimension 1I (“throughput increase”) : incore micro-
parallelism or vectorization	

Research projects (GPU prototype and Geant-Vector Prototype) have started
targeting beyond dimension I:	

parallel data (“baskets”) = particles from different events
grouped by logical volumes 	
 Vector	
 Prototype	
 56	

specializing coordinate transformations
"   How many of those floating point operations are actually relevant?

17%	
 28%	
 ~50% of all transformations are a
translation + very simple rotation	

statistics generated from ATLAS,CMS, ALICE, LHCB geometries (ftp://root.cern.ch/root/geometries.tar.gz)	

"   Let’s have a look at what important transformations are actually used:	

...	

"   looking still closer, one realizes: ~85% of all matrices would actually
require <=3 multiplications, <=3 additions	

"   for vectors of particles this adds up to a considerable saving in floating point ops	

Vector	
 Prototype	
 57	

Specializing Coordinate Transformations	

"   We should have specialized coordinate transformations !	

"   As before we can generate them using a template class 	

...	

"   A factory takes care to produce right instance	

GeneralTransformation *t = GeoManager::CreateTransformation(...);	

Vector	
 Prototype	
 58	

Sandro Wenzel	

Statistics Tubes

"   fulltube rmin = 0; 3826374	

"   hollowtube rmin >0; 2692417	

"   phitube rmin=0; 17475959	

"   phitube rmin>0; 1405601

counting atlas, cms, alice, lhcb, babar	
 (taken from
root files;

probably a bit
out of date)	

Vector	
 Prototype	
 59	

Sandro Wenzel	

statistics matrices

"   Identity transformation: 8.6 million; percent of total: 17%	

"   only translation: 14.1 million; percent total: 28%	

"   only rotation: 0.8 million; percent total: 1.6%	

" combi matrices: 27 million; percent total: 54%	

"   20 million rotation matrices have 6 zeros !!	

"   4.3 million rotation matrices have 4 zeros !!	

"   total number: 5.05 e7 matrices

counting atlas, cms, alice, lhcb, babar	

Vector	
 Prototype	
 60	

Acknowledgements

"   Geant-V / GPU team 	

"   Laurent.Duhem@Intel for discussions leading to the present ideas	

"   Johannes De Fine Licht (implementing a lot of the template ideas)

Thanks to:	

First prototype available at:	

https://github.com/sawenzel/VecGeom.git	

Vector	
 Prototype	
 61	

Summary/Outlook
"   status and challenges of vectorized geometry	

"   discussed motivation for using template techniques	

"   concentrated here on benefits of template specialization for
performance	

" generation of specialized classes without code duplication	

" reduction of static branches leading to better compiler optimization and more
efficient vectorization	

" avoiding unnecessary floating point operations	

"   overall 30% gain in our standard (simple) benchmark

"   code generality between scalar and vector code 	

"   sharing code between CPU and GPU	

Outlook	

Summary	

upcoming talk by Johannes
De Fine Licht	

"   April milestone for Geant-V / GPU prototype	
 Vector	
 Prototype	
 62	

Backup slides

Vector	
 Prototype	
 63	

Towards a common CPU / CUDA code base

Vector	
 Prototype	
 64	

Notes on benchmark conditions
"   System: Ivybridge iCore7 (4 core, not hyperthreaded (can read out 8hardware

performance counters))	

"   Compiler: gcc4.7.2 (compile flags -O2 -unroll-loops -ffast-math -mavx)	

"   OS: slc6	

"   Vc version: 0.73	

"   benchmarks usually run on empty system with cpu pinning (taskset -c)

"   benchmarks use preallocated pool of testdata, in which we take out N particles for
processing. Repeat this P times. For repetitions distinguish between random access of N
particles (higher cache impact) or sequential access in datapool (as shown here)	

"   benchmarks shown use NxP=const to time an overall similar amount of work	

Vector	
 Prototype	
 65	

SFT S o F T w a r e D e v e l o p m e n t f o r E x p e r i m e n t s	

Physics Specific work

n  Many issues opened in Jira about physics interactions
n  “SFT-private” version of G4 created
n  Opportunity to verify x-sections as extracted against x-sections

as sampled and data
q  An immediate issue with ionisation x-section

n  Some specific problems in the sampling code
q  The activation of the capture mechanism causes the code to crash
q  The sampling of the multiple scattering angle is problematic, as it clearly

gives wrong results. It would be important to see whether this can be done
by the SampDisOne routine that is already sampling the other interaction

Vector	
 Prototype	
 66	

SFT S o F T w a r e D e v e l o p m e n t f o r E x p e r i m e n t s	

Targets
n  By the end of the year we will “glue” the different pieces

together
q  And hopefully demonstrate the speedup potential of MT, locality and SIMD

n  Measure the evolution of the memory footprint and the
performance of the code at least in terms of hardware counters

n  Absolute performance measurements will be harder
q  Difficult compare apples to apples
q  Probably we need to develop dedicated benchmarks

n  Compare physics performance with full MC’s
n  We are working closely with Geant4 for the physics tables
n  Once the prototyping phase over, we will have to sit down with

the stakeholders and decide how to proceed from there

Vector	
 Prototype	
 67	

